Add SamplerEulerCFG++ node.
This node should match the DDIM implementation of CFG++ when "regular" is selected. "alternative" is a slightly different take on CFG++
This commit is contained in:
parent
2f360ae898
commit
73ca780019
|
@ -51,6 +51,12 @@ def set_model_options_patch_replace(model_options, patch, name, block_name, numb
|
|||
model_options["transformer_options"] = to
|
||||
return model_options
|
||||
|
||||
def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
|
||||
model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
|
||||
if disable_cfg1_optimization:
|
||||
model_options["disable_cfg1_optimization"] = True
|
||||
return model_options
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
|
||||
self.size = size
|
||||
|
@ -122,9 +128,7 @@ class ModelPatcher:
|
|||
self.model_options["disable_cfg1_optimization"] = True
|
||||
|
||||
def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
|
||||
self.model_options["sampler_post_cfg_function"] = self.model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
|
||||
if disable_cfg1_optimization:
|
||||
self.model_options["disable_cfg1_optimization"] = True
|
||||
self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)
|
||||
|
||||
def set_model_unet_function_wrapper(self, unet_wrapper_function: UnetWrapperFunction):
|
||||
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
||||
|
|
|
@ -56,6 +56,80 @@ class SamplerLCMUpscale:
|
|||
sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method})
|
||||
return (sampler, )
|
||||
|
||||
from comfy.k_diffusion.sampling import to_d
|
||||
import comfy.model_patcher
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_cfgpp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
|
||||
temp = [0]
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
sigma_hat = sigmas[i]
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
d = to_d(x, sigma_hat, temp[0])
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
x = denoised + sigmas[i + 1] * d
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_cfgpp_alt(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
|
||||
temp = [0]
|
||||
def post_cfg_function(args):
|
||||
temp[0] = args["uncond_denoised"]
|
||||
return args["denoised"]
|
||||
|
||||
model_options = extra_args.get("model_options", {}).copy()
|
||||
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
|
||||
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
sigma_hat = sigmas[i]
|
||||
denoised = model(x, sigma_hat * s_in, **extra_args)
|
||||
d = to_d(x - denoised + temp[0], sigma_hat, denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
|
||||
dt = sigmas[i + 1] - sigma_hat
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
return x
|
||||
|
||||
class SamplerEulerCFGpp:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required":
|
||||
{"version": (["regular", "alternative"],),}
|
||||
}
|
||||
RETURN_TYPES = ("SAMPLER",)
|
||||
# CATEGORY = "sampling/custom_sampling/samplers"
|
||||
CATEGORY = "_for_testing"
|
||||
|
||||
FUNCTION = "get_sampler"
|
||||
|
||||
def get_sampler(self, version):
|
||||
if version == "regular":
|
||||
sampler = comfy.samplers.KSAMPLER(sample_euler_cfgpp)
|
||||
else:
|
||||
sampler = comfy.samplers.KSAMPLER(sample_euler_cfgpp_alt)
|
||||
return (sampler, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"SamplerLCMUpscale": SamplerLCMUpscale,
|
||||
"SamplerEulerCFGpp": SamplerEulerCFGpp,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"SamplerEulerCFGpp": "SamplerEulerCFG++",
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue