Pull in latest upscale model code from chainner.

This commit is contained in:
comfyanonymous 2023-05-23 22:26:50 -04:00
parent c00bb1a0b7
commit 7310290f17
12 changed files with 1530 additions and 2 deletions

View File

@ -0,0 +1,110 @@
import math
import torch.nn as nn
class CA_layer(nn.Module):
def __init__(self, channel, reduction=16):
super(CA_layer, self).__init__()
# global average pooling
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(channel, channel // reduction, kernel_size=(1, 1), bias=False),
nn.GELU(),
nn.Conv2d(channel // reduction, channel, kernel_size=(1, 1), bias=False),
# nn.Sigmoid()
)
def forward(self, x):
y = self.fc(self.gap(x))
return x * y.expand_as(x)
class Simple_CA_layer(nn.Module):
def __init__(self, channel):
super(Simple_CA_layer, self).__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(
in_channels=channel,
out_channels=channel,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias=True,
)
def forward(self, x):
return x * self.fc(self.gap(x))
class ECA_layer(nn.Module):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def __init__(self, channel):
super(ECA_layer, self).__init__()
b = 1
gamma = 2
k_size = int(abs(math.log(channel, 2) + b) / gamma)
k_size = k_size if k_size % 2 else k_size + 1
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False
)
# self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x: input features with shape [b, c, h, w]
# b, c, h, w = x.size()
# feature descriptor on the global spatial information
y = self.avg_pool(x)
# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
# Multi-scale information fusion
# y = self.sigmoid(y)
return x * y.expand_as(x)
class ECA_MaxPool_layer(nn.Module):
"""Constructs a ECA module.
Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def __init__(self, channel):
super(ECA_MaxPool_layer, self).__init__()
b = 1
gamma = 2
k_size = int(abs(math.log(channel, 2) + b) / gamma)
k_size = k_size if k_size % 2 else k_size + 1
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.conv = nn.Conv1d(
1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False
)
# self.sigmoid = nn.Sigmoid()
def forward(self, x):
# x: input features with shape [b, c, h, w]
# b, c, h, w = x.size()
# feature descriptor on the global spatial information
y = self.max_pool(x)
# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
# Multi-scale information fusion
# y = self.sigmoid(y)
return x * y.expand_as(x)

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,577 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OSA.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:07:42 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
from torch import einsum, nn
from .layernorm import LayerNorm2d
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_tuple(val, length=1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x)) + x
class Conv_PreNormResidual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = LayerNorm2d(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x)) + x
class FeedForward(nn.Module):
def __init__(self, dim, mult=2, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Conv_FeedForward(nn.Module):
def __init__(self, dim, mult=2, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Conv2d(dim, inner_dim, 1, 1, 0),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(inner_dim, dim, 1, 1, 0),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Gated_Conv_FeedForward(nn.Module):
def __init__(self, dim, mult=1, bias=False, dropout=0.0):
super().__init__()
hidden_features = int(dim * mult)
self.project_in = nn.Conv2d(dim, hidden_features * 2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(
hidden_features * 2,
hidden_features * 2,
kernel_size=3,
stride=1,
padding=1,
groups=hidden_features * 2,
bias=bias,
)
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
# MBConv
class SqueezeExcitation(nn.Module):
def __init__(self, dim, shrinkage_rate=0.25):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)
self.gate = nn.Sequential(
Reduce("b c h w -> b c", "mean"),
nn.Linear(dim, hidden_dim, bias=False),
nn.SiLU(),
nn.Linear(hidden_dim, dim, bias=False),
nn.Sigmoid(),
Rearrange("b c -> b c 1 1"),
)
def forward(self, x):
return x * self.gate(x)
class MBConvResidual(nn.Module):
def __init__(self, fn, dropout=0.0):
super().__init__()
self.fn = fn
self.dropsample = Dropsample(dropout)
def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x
class Dropsample(nn.Module):
def __init__(self, prob=0):
super().__init__()
self.prob = prob
def forward(self, x):
device = x.device
if self.prob == 0.0 or (not self.training):
return x
keep_mask = (
torch.FloatTensor((x.shape[0], 1, 1, 1), device=device).uniform_()
> self.prob
)
return x * keep_mask / (1 - self.prob)
def MBConv(
dim_in, dim_out, *, downsample, expansion_rate=4, shrinkage_rate=0.25, dropout=0.0
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1
net = nn.Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
# nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(
hidden_dim, hidden_dim, 3, stride=stride, padding=1, groups=hidden_dim
),
# nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate=shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
# nn.BatchNorm2d(dim_out)
)
if dim_in == dim_out and not downsample:
net = MBConvResidual(net, dropout=dropout)
return net
# attention related classes
class Attention(nn.Module):
def __init__(
self,
dim,
dim_head=32,
dropout=0.0,
window_size=7,
with_pe=True,
):
super().__init__()
assert (
dim % dim_head
) == 0, "dimension should be divisible by dimension per head"
self.heads = dim // dim_head
self.scale = dim_head**-0.5
self.with_pe = with_pe
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.attend = nn.Sequential(nn.Softmax(dim=-1), nn.Dropout(dropout))
self.to_out = nn.Sequential(
nn.Linear(dim, dim, bias=False), nn.Dropout(dropout)
)
# relative positional bias
if self.with_pe:
self.rel_pos_bias = nn.Embedding((2 * window_size - 1) ** 2, self.heads)
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos))
grid = rearrange(grid, "c i j -> (i j) c")
rel_pos = rearrange(grid, "i ... -> i 1 ...") - rearrange(
grid, "j ... -> 1 j ..."
)
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(
dim=-1
)
self.register_buffer("rel_pos_indices", rel_pos_indices, persistent=False)
def forward(self, x):
batch, height, width, window_height, window_width, _, device, h = (
*x.shape,
x.device,
self.heads,
)
# flatten
x = rearrange(x, "b x y w1 w2 d -> (b x y) (w1 w2) d")
# project for queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
# split heads
q, k, v = map(lambda t: rearrange(t, "b n (h d ) -> b h n d", h=h), (q, k, v))
# scale
q = q * self.scale
# sim
sim = einsum("b h i d, b h j d -> b h i j", q, k)
# add positional bias
if self.with_pe:
bias = self.rel_pos_bias(self.rel_pos_indices)
sim = sim + rearrange(bias, "i j h -> h i j")
# attention
attn = self.attend(sim)
# aggregate
out = einsum("b h i j, b h j d -> b h i d", attn, v)
# merge heads
out = rearrange(
out, "b h (w1 w2) d -> b w1 w2 (h d)", w1=window_height, w2=window_width
)
# combine heads out
out = self.to_out(out)
return rearrange(out, "(b x y) ... -> b x y ...", x=height, y=width)
class Block_Attention(nn.Module):
def __init__(
self,
dim,
dim_head=32,
bias=False,
dropout=0.0,
window_size=7,
with_pe=True,
):
super().__init__()
assert (
dim % dim_head
) == 0, "dimension should be divisible by dimension per head"
self.heads = dim // dim_head
self.ps = window_size
self.scale = dim_head**-0.5
self.with_pe = with_pe
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3,
dim * 3,
kernel_size=3,
stride=1,
padding=1,
groups=dim * 3,
bias=bias,
)
self.attend = nn.Sequential(nn.Softmax(dim=-1), nn.Dropout(dropout))
self.to_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
# project for queries, keys, values
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
q, k, v = qkv.chunk(3, dim=1)
# split heads
q, k, v = map(
lambda t: rearrange(
t,
"b (h d) (x w1) (y w2) -> (b x y) h (w1 w2) d",
h=self.heads,
w1=self.ps,
w2=self.ps,
),
(q, k, v),
)
# scale
q = q * self.scale
# sim
sim = einsum("b h i d, b h j d -> b h i j", q, k)
# attention
attn = self.attend(sim)
# aggregate
out = einsum("b h i j, b h j d -> b h i d", attn, v)
# merge heads
out = rearrange(
out,
"(b x y) head (w1 w2) d -> b (head d) (x w1) (y w2)",
x=h // self.ps,
y=w // self.ps,
head=self.heads,
w1=self.ps,
w2=self.ps,
)
out = self.to_out(out)
return out
class Channel_Attention(nn.Module):
def __init__(self, dim, heads, bias=False, dropout=0.0, window_size=7):
super(Channel_Attention, self).__init__()
self.heads = heads
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.ps = window_size
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3,
dim * 3,
kernel_size=3,
stride=1,
padding=1,
groups=dim * 3,
bias=bias,
)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
qkv = qkv.chunk(3, dim=1)
q, k, v = map(
lambda t: rearrange(
t,
"b (head d) (h ph) (w pw) -> b (h w) head d (ph pw)",
ph=self.ps,
pw=self.ps,
head=self.heads,
),
qkv,
)
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = attn @ v
out = rearrange(
out,
"b (h w) head d (ph pw) -> b (head d) (h ph) (w pw)",
h=h // self.ps,
w=w // self.ps,
ph=self.ps,
pw=self.ps,
head=self.heads,
)
out = self.project_out(out)
return out
class Channel_Attention_grid(nn.Module):
def __init__(self, dim, heads, bias=False, dropout=0.0, window_size=7):
super(Channel_Attention_grid, self).__init__()
self.heads = heads
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.ps = window_size
self.qkv = nn.Conv2d(dim, dim * 3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(
dim * 3,
dim * 3,
kernel_size=3,
stride=1,
padding=1,
groups=dim * 3,
bias=bias,
)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
qkv = qkv.chunk(3, dim=1)
q, k, v = map(
lambda t: rearrange(
t,
"b (head d) (h ph) (w pw) -> b (ph pw) head d (h w)",
ph=self.ps,
pw=self.ps,
head=self.heads,
),
qkv,
)
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = attn @ v
out = rearrange(
out,
"b (ph pw) head d (h w) -> b (head d) (h ph) (w pw)",
h=h // self.ps,
w=w // self.ps,
ph=self.ps,
pw=self.ps,
head=self.heads,
)
out = self.project_out(out)
return out
class OSA_Block(nn.Module):
def __init__(
self,
channel_num=64,
bias=True,
ffn_bias=True,
window_size=8,
with_pe=False,
dropout=0.0,
):
super(OSA_Block, self).__init__()
w = window_size
self.layer = nn.Sequential(
MBConv(
channel_num,
channel_num,
downsample=False,
expansion_rate=1,
shrinkage_rate=0.25,
),
Rearrange(
"b d (x w1) (y w2) -> b x y w1 w2 d", w1=w, w2=w
), # block-like attention
PreNormResidual(
channel_num,
Attention(
dim=channel_num,
dim_head=channel_num // 4,
dropout=dropout,
window_size=window_size,
with_pe=with_pe,
),
),
Rearrange("b x y w1 w2 d -> b d (x w1) (y w2)"),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
# channel-like attention
Conv_PreNormResidual(
channel_num,
Channel_Attention(
dim=channel_num, heads=4, dropout=dropout, window_size=window_size
),
),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
Rearrange(
"b d (w1 x) (w2 y) -> b x y w1 w2 d", w1=w, w2=w
), # grid-like attention
PreNormResidual(
channel_num,
Attention(
dim=channel_num,
dim_head=channel_num // 4,
dropout=dropout,
window_size=window_size,
with_pe=with_pe,
),
),
Rearrange("b x y w1 w2 d -> b d (w1 x) (w2 y)"),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
# channel-like attention
Conv_PreNormResidual(
channel_num,
Channel_Attention_grid(
dim=channel_num, heads=4, dropout=dropout, window_size=window_size
),
),
Conv_PreNormResidual(
channel_num, Gated_Conv_FeedForward(dim=channel_num, dropout=dropout)
),
)
def forward(self, x):
out = self.layer(x)
return out

View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OSAG.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:08:49 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch.nn as nn
from .esa import ESA
from .OSA import OSA_Block
class OSAG(nn.Module):
def __init__(
self,
channel_num=64,
bias=True,
block_num=4,
ffn_bias=False,
window_size=0,
pe=False,
):
super(OSAG, self).__init__()
# print("window_size: %d" % (window_size))
# print("with_pe", pe)
# print("ffn_bias: %d" % (ffn_bias))
# block_script_name = kwargs.get("block_script_name", "OSA")
# block_class_name = kwargs.get("block_class_name", "OSA_Block")
# script_name = "." + block_script_name
# package = __import__(script_name, fromlist=True)
block_class = OSA_Block # getattr(package, block_class_name)
group_list = []
for _ in range(block_num):
temp_res = block_class(
channel_num,
bias,
ffn_bias=ffn_bias,
window_size=window_size,
with_pe=pe,
)
group_list.append(temp_res)
group_list.append(nn.Conv2d(channel_num, channel_num, 1, 1, 0, bias=bias))
self.residual_layer = nn.Sequential(*group_list)
esa_channel = max(channel_num // 4, 16)
self.esa = ESA(esa_channel, channel_num)
def forward(self, x):
out = self.residual_layer(x)
out = out + x
return self.esa(out)

View File

@ -0,0 +1,133 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: OmniSR.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Sunday, 23rd April 2023 3:06:36 pm
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from .OSAG import OSAG
from .pixelshuffle import pixelshuffle_block
class OmniSR(nn.Module):
def __init__(
self,
state_dict,
**kwargs,
):
super(OmniSR, self).__init__()
self.state = state_dict
bias = True # Fine to assume this for now
block_num = 1 # Fine to assume this for now
ffn_bias = True
pe = True
num_feat = state_dict["input.weight"].shape[0] or 64
num_in_ch = state_dict["input.weight"].shape[1] or 3
num_out_ch = num_in_ch # we can just assume this for now. pixelshuffle smh
pixelshuffle_shape = state_dict["up.0.weight"].shape[0]
up_scale = math.sqrt(pixelshuffle_shape / num_out_ch)
if up_scale - int(up_scale) > 0:
print(
"out_nc is probably different than in_nc, scale calculation might be wrong"
)
up_scale = int(up_scale)
res_num = 0
for key in state_dict.keys():
if "residual_layer" in key:
temp_res_num = int(key.split(".")[1])
if temp_res_num > res_num:
res_num = temp_res_num
res_num = res_num + 1 # zero-indexed
residual_layer = []
self.res_num = res_num
self.window_size = 8 # we can just assume this for now, but there's probably a way to calculate it (just need to get the sqrt of the right layer)
self.up_scale = up_scale
for _ in range(res_num):
temp_res = OSAG(
channel_num=num_feat,
bias=bias,
block_num=block_num,
ffn_bias=ffn_bias,
window_size=self.window_size,
pe=pe,
)
residual_layer.append(temp_res)
self.residual_layer = nn.Sequential(*residual_layer)
self.input = nn.Conv2d(
in_channels=num_in_ch,
out_channels=num_feat,
kernel_size=3,
stride=1,
padding=1,
bias=bias,
)
self.output = nn.Conv2d(
in_channels=num_feat,
out_channels=num_feat,
kernel_size=3,
stride=1,
padding=1,
bias=bias,
)
self.up = pixelshuffle_block(num_feat, num_out_ch, up_scale, bias=bias)
# self.tail = pixelshuffle_block(num_feat,num_out_ch,up_scale,bias=bias)
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, sqrt(2. / n))
# chaiNNer specific stuff
self.model_arch = "OmniSR"
self.sub_type = "SR"
self.in_nc = num_in_ch
self.out_nc = num_out_ch
self.num_feat = num_feat
self.scale = up_scale
self.supports_fp16 = True # TODO: Test this
self.supports_bfp16 = True
self.min_size_restriction = 16
self.load_state_dict(state_dict, strict=False)
def check_image_size(self, x):
_, _, h, w = x.size()
# import pdb; pdb.set_trace()
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
# x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "constant", 0)
return x
def forward(self, x):
H, W = x.shape[2:]
x = self.check_image_size(x)
residual = self.input(x)
out = self.residual_layer(residual)
# origin
out = torch.add(self.output(out), residual)
out = self.up(out)
out = out[:, :, : H * self.up_scale, : W * self.up_scale]
return out

View File

@ -0,0 +1,294 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: esa.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Thursday, 20th April 2023 9:28:06 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
from .layernorm import LayerNorm2d
def moment(x, dim=(2, 3), k=2):
assert len(x.size()) == 4
mean = torch.mean(x, dim=dim).unsqueeze(-1).unsqueeze(-1)
mk = (1 / (x.size(2) * x.size(3))) * torch.sum(torch.pow(x - mean, k), dim=dim)
return mk
class ESA(nn.Module):
"""
Modification of Enhanced Spatial Attention (ESA), which is proposed by
`Residual Feature Aggregation Network for Image Super-Resolution`
Note: `conv_max` and `conv3_` are NOT used here, so the corresponding codes
are deleted.
"""
def __init__(self, esa_channels, n_feats, conv=nn.Conv2d):
super(ESA, self).__init__()
f = esa_channels
self.conv1 = conv(n_feats, f, kernel_size=1)
self.conv_f = conv(f, f, kernel_size=1)
self.conv2 = conv(f, f, kernel_size=3, stride=2, padding=0)
self.conv3 = conv(f, f, kernel_size=3, padding=1)
self.conv4 = conv(f, n_feats, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
c1_ = self.conv1(x)
c1 = self.conv2(c1_)
v_max = F.max_pool2d(c1, kernel_size=7, stride=3)
c3 = self.conv3(v_max)
c3 = F.interpolate(
c3, (x.size(2), x.size(3)), mode="bilinear", align_corners=False
)
cf = self.conv_f(c1_)
c4 = self.conv4(c3 + cf)
m = self.sigmoid(c4)
return x * m
class LK_ESA(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(LK_ESA, self).__init__()
f = esa_channels
self.conv1 = conv(n_feats, f, kernel_size=1)
self.conv_f = conv(f, f, kernel_size=1)
kernel_size = 17
kernel_expand = kernel_expand
padding = kernel_size // 2
self.vec_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, kernel_size),
padding=(0, padding),
groups=2,
bias=bias,
)
self.vec_conv3x1 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, 3),
padding=(0, 1),
groups=2,
bias=bias,
)
self.hor_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(kernel_size, 1),
padding=(padding, 0),
groups=2,
bias=bias,
)
self.hor_conv1x3 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(3, 1),
padding=(1, 0),
groups=2,
bias=bias,
)
self.conv4 = conv(f, n_feats, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
c1_ = self.conv1(x)
res = self.vec_conv(c1_) + self.vec_conv3x1(c1_)
res = self.hor_conv(res) + self.hor_conv1x3(res)
cf = self.conv_f(c1_)
c4 = self.conv4(res + cf)
m = self.sigmoid(c4)
return x * m
class LK_ESA_LN(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(LK_ESA_LN, self).__init__()
f = esa_channels
self.conv1 = conv(n_feats, f, kernel_size=1)
self.conv_f = conv(f, f, kernel_size=1)
kernel_size = 17
kernel_expand = kernel_expand
padding = kernel_size // 2
self.norm = LayerNorm2d(n_feats)
self.vec_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, kernel_size),
padding=(0, padding),
groups=2,
bias=bias,
)
self.vec_conv3x1 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(1, 3),
padding=(0, 1),
groups=2,
bias=bias,
)
self.hor_conv = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(kernel_size, 1),
padding=(padding, 0),
groups=2,
bias=bias,
)
self.hor_conv1x3 = nn.Conv2d(
in_channels=f * kernel_expand,
out_channels=f * kernel_expand,
kernel_size=(3, 1),
padding=(1, 0),
groups=2,
bias=bias,
)
self.conv4 = conv(f, n_feats, kernel_size=1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
c1_ = self.norm(x)
c1_ = self.conv1(c1_)
res = self.vec_conv(c1_) + self.vec_conv3x1(c1_)
res = self.hor_conv(res) + self.hor_conv1x3(res)
cf = self.conv_f(c1_)
c4 = self.conv4(res + cf)
m = self.sigmoid(c4)
return x * m
class AdaGuidedFilter(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(AdaGuidedFilter, self).__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(
in_channels=n_feats,
out_channels=1,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias=True,
)
self.r = 5
def box_filter(self, x, r):
channel = x.shape[1]
kernel_size = 2 * r + 1
weight = 1.0 / (kernel_size**2)
box_kernel = weight * torch.ones(
(channel, 1, kernel_size, kernel_size), dtype=torch.float32, device=x.device
)
output = F.conv2d(x, weight=box_kernel, stride=1, padding=r, groups=channel)
return output
def forward(self, x):
_, _, H, W = x.shape
N = self.box_filter(
torch.ones((1, 1, H, W), dtype=x.dtype, device=x.device), self.r
)
# epsilon = self.fc(self.gap(x))
# epsilon = torch.pow(epsilon, 2)
epsilon = 1e-2
mean_x = self.box_filter(x, self.r) / N
var_x = self.box_filter(x * x, self.r) / N - mean_x * mean_x
A = var_x / (var_x + epsilon)
b = (1 - A) * mean_x
m = A * x + b
# mean_A = self.box_filter(A, self.r) / N
# mean_b = self.box_filter(b, self.r) / N
# m = mean_A * x + mean_b
return x * m
class AdaConvGuidedFilter(nn.Module):
def __init__(
self, esa_channels, n_feats, conv=nn.Conv2d, kernel_expand=1, bias=True
):
super(AdaConvGuidedFilter, self).__init__()
f = esa_channels
self.conv_f = conv(f, f, kernel_size=1)
kernel_size = 17
kernel_expand = kernel_expand
padding = kernel_size // 2
self.vec_conv = nn.Conv2d(
in_channels=f,
out_channels=f,
kernel_size=(1, kernel_size),
padding=(0, padding),
groups=f,
bias=bias,
)
self.hor_conv = nn.Conv2d(
in_channels=f,
out_channels=f,
kernel_size=(kernel_size, 1),
padding=(padding, 0),
groups=f,
bias=bias,
)
self.gap = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(
in_channels=f,
out_channels=f,
kernel_size=1,
padding=0,
stride=1,
groups=1,
bias=True,
)
def forward(self, x):
y = self.vec_conv(x)
y = self.hor_conv(y)
sigma = torch.pow(y, 2)
epsilon = self.fc(self.gap(y))
weight = sigma / (sigma + epsilon)
m = weight * x + (1 - weight)
return x * m

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: layernorm.py
# Created Date: Tuesday April 28th 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Thursday, 20th April 2023 9:28:20 am
# Modified By: Chen Xuanhong
# Copyright (c) 2020 Shanghai Jiao Tong University
#############################################################
import torch
import torch.nn as nn
class LayerNormFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, eps):
ctx.eps = eps
N, C, H, W = x.size()
mu = x.mean(1, keepdim=True)
var = (x - mu).pow(2).mean(1, keepdim=True)
y = (x - mu) / (var + eps).sqrt()
ctx.save_for_backward(y, var, weight)
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
return y
@staticmethod
def backward(ctx, grad_output):
eps = ctx.eps
N, C, H, W = grad_output.size()
y, var, weight = ctx.saved_variables
g = grad_output * weight.view(1, C, 1, 1)
mean_g = g.mean(dim=1, keepdim=True)
mean_gy = (g * y).mean(dim=1, keepdim=True)
gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
return (
gx,
(grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0),
grad_output.sum(dim=3).sum(dim=2).sum(dim=0),
None,
)
class LayerNorm2d(nn.Module):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d, self).__init__()
self.register_parameter("weight", nn.Parameter(torch.ones(channels)))
self.register_parameter("bias", nn.Parameter(torch.zeros(channels)))
self.eps = eps
def forward(self, x):
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
class GRN(nn.Module):
"""GRN (Global Response Normalization) layer"""
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.zeros(1, dim, 1, 1))
self.beta = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(2, 3), keepdim=True)
Nx = Gx / (Gx.mean(dim=1, keepdim=True) + 1e-6)
return self.gamma * (x * Nx) + self.beta + x

View File

@ -0,0 +1,31 @@
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
#############################################################
# File: pixelshuffle.py
# Created Date: Friday July 1st 2022
# Author: Chen Xuanhong
# Email: chenxuanhongzju@outlook.com
# Last Modified: Friday, 1st July 2022 10:18:39 am
# Modified By: Chen Xuanhong
# Copyright (c) 2022 Shanghai Jiao Tong University
#############################################################
import torch.nn as nn
def pixelshuffle_block(
in_channels, out_channels, upscale_factor=2, kernel_size=3, bias=False
):
"""
Upsample features according to `upscale_factor`.
"""
padding = kernel_size // 2
conv = nn.Conv2d(
in_channels,
out_channels * (upscale_factor**2),
kernel_size,
padding=1,
bias=bias,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
return nn.Sequential(*[conv, pixel_shuffle])

View File

@ -79,6 +79,12 @@ class RRDBNet(nn.Module):
self.scale: int = self.get_scale()
self.num_filters: int = self.state[self.key_arr[0]].shape[0]
c2x2 = False
if self.state["model.0.weight"].shape[-2] == 2:
c2x2 = True
self.scale = round(math.sqrt(self.scale / 4))
self.model_arch = "ESRGAN-2c2"
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
@ -105,11 +111,15 @@ class RRDBNet(nn.Module):
out_nc=self.num_filters,
upscale_factor=3,
act_type=self.act,
c2x2=c2x2,
)
else:
upsample_blocks = [
upsample_block(
in_nc=self.num_filters, out_nc=self.num_filters, act_type=self.act
in_nc=self.num_filters,
out_nc=self.num_filters,
act_type=self.act,
c2x2=c2x2,
)
for _ in range(int(math.log(self.scale, 2)))
]
@ -122,6 +132,7 @@ class RRDBNet(nn.Module):
kernel_size=3,
norm_type=None,
act_type=None,
c2x2=c2x2,
),
B.ShortcutBlock(
B.sequential(
@ -138,6 +149,7 @@ class RRDBNet(nn.Module):
act_type=self.act,
mode="CNA",
plus=self.plus,
c2x2=c2x2,
)
for _ in range(self.num_blocks)
],
@ -149,6 +161,7 @@ class RRDBNet(nn.Module):
norm_type=self.norm,
act_type=None,
mode=self.mode,
c2x2=c2x2,
),
)
),
@ -160,6 +173,7 @@ class RRDBNet(nn.Module):
kernel_size=3,
norm_type=None,
act_type=self.act,
c2x2=c2x2,
),
# hr_conv1
B.conv_block(
@ -168,6 +182,7 @@ class RRDBNet(nn.Module):
kernel_size=3,
norm_type=None,
act_type=None,
c2x2=c2x2,
),
)

View File

@ -141,6 +141,19 @@ def sequential(*args):
ConvMode = Literal["CNA", "NAC", "CNAC"]
# 2x2x2 Conv Block
def conv_block_2c2(
in_nc,
out_nc,
act_type="relu",
):
return sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
act(act_type) if act_type else None,
)
def conv_block(
in_nc: int,
out_nc: int,
@ -153,12 +166,17 @@ def conv_block(
norm_type: str | None = None,
act_type: str | None = "relu",
mode: ConvMode = "CNA",
c2x2=False,
):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
if c2x2:
return conv_block_2c2(in_nc, out_nc, act_type=act_type)
assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
@ -285,6 +303,7 @@ class RRDB(nn.Module):
_convtype="Conv2D",
_spectral_norm=False,
plus=False,
c2x2=False,
):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(
@ -298,6 +317,7 @@ class RRDB(nn.Module):
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
@ -310,6 +330,7 @@ class RRDB(nn.Module):
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
@ -322,6 +343,7 @@ class RRDB(nn.Module):
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
def forward(self, x):
@ -365,6 +387,7 @@ class ResidualDenseBlock_5C(nn.Module):
act_type="leakyrelu",
mode: ConvMode = "CNA",
plus=False,
c2x2=False,
):
super(ResidualDenseBlock_5C, self).__init__()
@ -382,6 +405,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv2 = conv_block(
nf + gc,
@ -393,6 +417,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv3 = conv_block(
nf + 2 * gc,
@ -404,6 +429,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv4 = conv_block(
nf + 3 * gc,
@ -415,6 +441,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
if mode == "CNA":
last_act = None
@ -430,6 +457,7 @@ class ResidualDenseBlock_5C(nn.Module):
norm_type=norm_type,
act_type=last_act,
mode=mode,
c2x2=c2x2,
)
def forward(self, x):
@ -499,6 +527,7 @@ def upconv_block(
norm_type: str | None = None,
act_type="relu",
mode="nearest",
c2x2=False,
):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
@ -512,5 +541,6 @@ def upconv_block(
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
c2x2=c2x2,
)
return sequential(upsample, conv)

View File

@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.MAT import MAT
from .architecture.OmniSR.OmniSR import OmniSR
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
@ -32,6 +33,7 @@ def load_state_dict(state_dict) -> PyTorchModel:
state_dict = state_dict["params"]
state_dict_keys = list(state_dict.keys())
# SRVGGNet Real-ESRGAN (v2)
if "body.0.weight" in state_dict_keys and "body.1.weight" in state_dict_keys:
model = RealESRGANv2(state_dict)
@ -79,6 +81,9 @@ def load_state_dict(state_dict) -> PyTorchModel:
# MAT
elif "synthesis.first_stage.conv_first.conv.resample_filter" in state_dict_keys:
model = MAT(state_dict)
# Omni-SR
elif "residual_layer.0.residual_layer.0.layer.0.fn.0.weight" in state_dict_keys:
model = OmniSR(state_dict)
# Regular ESRGAN, "new-arch" ESRGAN, Real-ESRGAN v1
else:
try:

View File

@ -6,6 +6,7 @@ from .architecture.face.restoreformer_arch import RestoreFormer
from .architecture.HAT import HAT
from .architecture.LaMa import LaMa
from .architecture.MAT import MAT
from .architecture.OmniSR.OmniSR import OmniSR
from .architecture.RRDB import RRDBNet as ESRGAN
from .architecture.SPSR import SPSRNet as SPSR
from .architecture.SRVGG import SRVGGNetCompact as RealESRGANv2
@ -13,7 +14,7 @@ from .architecture.SwiftSRGAN import Generator as SwiftSRGAN
from .architecture.Swin2SR import Swin2SR
from .architecture.SwinIR import SwinIR
PyTorchSRModels = (RealESRGANv2, SPSR, SwiftSRGAN, ESRGAN, SwinIR, Swin2SR, HAT)
PyTorchSRModels = (RealESRGANv2, SPSR, SwiftSRGAN, ESRGAN, SwinIR, Swin2SR, HAT, OmniSR)
PyTorchSRModel = Union[
RealESRGANv2,
SPSR,
@ -22,6 +23,7 @@ PyTorchSRModel = Union[
SwinIR,
Swin2SR,
HAT,
OmniSR,
]