Use transformers CLIP instead of open_clip for SD2.x

This should make things a bit cleaner.
This commit is contained in:
comfyanonymous 2023-02-05 14:36:28 -05:00
parent bf9ccffb17
commit 56d802e1f3
3 changed files with 77 additions and 103 deletions

View File

@ -40,6 +40,42 @@ def load_model_from_config(config, ckpt, verbose=False, load_state_dict_to=[]):
if ids.dtype == torch.float32:
sd['cond_stage_model.transformer.text_model.embeddings.position_ids'] = ids.round()
keys_to_replace = {
"cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
"cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
"cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
"cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
}
for x in keys_to_replace:
if x in sd:
sd[keys_to_replace[x]] = sd.pop(x)
resblock_to_replace = {
"ln_1": "layer_norm1",
"ln_2": "layer_norm2",
"mlp.c_fc": "mlp.fc1",
"mlp.c_proj": "mlp.fc2",
"attn.out_proj": "self_attn.out_proj",
}
for resblock in range(24):
for x in resblock_to_replace:
for y in ["weight", "bias"]:
k = "cond_stage_model.model.transformer.resblocks.{}.{}.{}".format(resblock, x, y)
k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, resblock_to_replace[x], y)
if k in sd:
sd[k_to] = sd.pop(k)
for y in ["weight", "bias"]:
k_from = "cond_stage_model.model.transformer.resblocks.{}.attn.in_proj_{}".format(resblock, y)
if k_from in sd:
weights = sd.pop(k_from)
for x in range(3):
p = ["self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj"]
k_to = "cond_stage_model.transformer.text_model.encoder.layers.{}.{}.{}".format(resblock, p[x], y)
sd[k_to] = weights[1024*x:1024*(x + 1)]
for x in load_state_dict_to:
x.load_state_dict(sd, strict=False)
@ -62,12 +98,6 @@ LORA_CLIP_MAP = {
"self_attn.out_proj": "self_attn_out_proj",
}
LORA_CLIP2_MAP = {
"mlp.c_fc": "mlp_fc1",
"mlp.c_proj": "mlp_fc2",
"attn.out_proj": "self_attn_out_proj",
}
LORA_UNET_MAP = {
"proj_in": "proj_in",
"proj_out": "proj_out",
@ -116,7 +146,7 @@ def model_lora_keys(model, key_map={}):
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_down_blocks_{}_attentions_{}_{}".format(counter // 2, counter % 2, LORA_UNET_MAP[c])
key_map[lora_key] = (k, 0)
key_map[lora_key] = k
up_counter += 1
if up_counter >= 4:
counter += 1
@ -124,7 +154,7 @@ def model_lora_keys(model, key_map={}):
k = "model.diffusion_model.middle_block.1.{}.weight".format(c)
if k in sdk:
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP[c])
key_map[lora_key] = (k, 0)
key_map[lora_key] = k
counter = 3
for b in range(12):
tk = "model.diffusion_model.output_blocks.{}.1".format(b)
@ -133,29 +163,18 @@ def model_lora_keys(model, key_map={}):
k = "{}.{}.weight".format(tk, c)
if k in sdk:
lora_key = "lora_unet_up_blocks_{}_attentions_{}_{}".format(counter // 3, counter % 3, LORA_UNET_MAP[c])
key_map[lora_key] = (k, 0)
key_map[lora_key] = k
up_counter += 1
if up_counter >= 4:
counter += 1
counter = 0
text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
for b in range(12):
for b in range(24):
for c in LORA_CLIP_MAP:
k = "transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
key_map[lora_key] = (k, 0)
for b in range(24):
for c in LORA_CLIP2_MAP:
k = "model.transformer.resblocks.{}.{}.weight".format(b, c)
if k in sdk:
lora_key = text_model_lora_key.format(b, LORA_CLIP2_MAP[c])
key_map[lora_key] = (k, 0)
k = "model.transformer.resblocks.{}.attn.in_proj_weight".format(b)
if k in sdk:
key_map[text_model_lora_key.format(b, "self_attn_q_proj")] = (k, 0)
key_map[text_model_lora_key.format(b, "self_attn_k_proj")] = (k, 1)
key_map[text_model_lora_key.format(b, "self_attn_v_proj")] = (k, 2)
key_map[lora_key] = k
return key_map
@ -174,7 +193,7 @@ class ModelPatcher:
p = {}
model_sd = self.model.state_dict()
for k in patches:
if k[0] in model_sd:
if k in model_sd:
p[k] = patches[k]
self.patches += [(strength, p)]
return p.keys()
@ -184,8 +203,7 @@ class ModelPatcher:
for p in self.patches:
for k in p[1]:
v = p[1][k]
key = k[0]
index = k[1]
key = k
if key not in model_sd:
print("could not patch. key doesn't exist in model:", k)
continue
@ -199,10 +217,7 @@ class ModelPatcher:
mat2 = v[1]
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
calc = (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float()))
if len(weight.shape) > 2:
calc = calc.reshape(weight.shape)
weight[index * mat1.shape[0]:(index + 1) * mat1.shape[0]] += calc.type(weight.dtype).to(weight.device)
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
return self.model
def unpatch_model(self):
model_sd = self.model.state_dict()

View File

@ -1,86 +1,22 @@
import sd1_clip
import open_clip
import torch
import os
class SD2ClipModel(torch.nn.Module, sd1_clip.ClipTokenWeightEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
#"pooled",
"last",
"penultimate",
"hidden"
]
#version="laion2b_s32b_b79k"
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77,
freeze=True, layer="penultimate", layer_idx=None):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'))
del model.visual
self.model = model
self.device = device
self.max_length = max_length
class SD2ClipModel(sd1_clip.SD1ClipModel):
def __init__(self, arch="ViT-H-14", device="cpu", max_length=77, freeze=True, layer="penultimate", layer_idx=None):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd2_clip_config.json")
super().__init__(device=device, freeze=freeze, textmodel_json_config=textmodel_json_config)
self.empty_tokens = [[49406] + [49407] + [0] * 75]
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
if layer == "last":
layer_idx = -1
elif layer == "penultimate":
layer_idx = -2
elif self.layer == "hidden":
assert layer_idx is not None
assert abs(layer_idx) < 24
self.clip_layer(layer_idx)
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def clip_layer(self, layer_idx):
#layer_idx should have the same logic as the one for SD1
if abs(layer_idx) >= 24:
self.layer_idx = 0
else:
if layer_idx < 0:
self.layer_idx = -(layer_idx + 1)
else:
self.layer_idx = 24 - (layer_idx + 1)
def forward(self, tokens):
tokens = torch.LongTensor(tokens).to(self.device)
z = self.encode_with_transformer(tokens)
return z
def encode_with_transformer(self, tokens):
x = self.model.token_embedding(tokens) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, tokens):
return self(tokens)
self.clip_layer(layer_idx)
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, tokenizer_path=None):

View File

@ -0,0 +1,23 @@
{
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 2,
"hidden_act": "gelu",
"hidden_size": 1024,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 77,
"model_type": "clip_text_model",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 1,
"projection_dim": 512,
"torch_dtype": "float32",
"vocab_size": 49408
}