Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks

This commit is contained in:
kosinkadink1@gmail.com 2024-09-19 21:43:58 +09:00
parent e80dc96627
commit 55014293b1
3 changed files with 394 additions and 267 deletions

View File

@ -19,6 +19,7 @@ class EnumHookMode(enum.Enum):
class EnumHookType(enum.Enum):
Weight = "weight"
Patch = "patch"
AddModel = "addmodel"
class EnumWeightTarget(enum.Enum):
Model = "model"
@ -121,10 +122,22 @@ class PatchHook(Hook):
def clone(self, subtype: Callable=None):
if subtype is None:
subtype = type(self)
c: PatchHook = super().clone(type(self))
c: PatchHook = super().clone(subtype)
c.patches = self.patches
return c
class AddModelHook(Hook):
def __init__(self, model: 'ModelPatcher'):
super().__init__(hook_type=EnumHookType.AddModel)
self.model = model
def clone(self, subtype: Callable=None):
if subtype is None:
subtype = type(self)
c: AddModelHook = super().clone(subtype)
c.model = self.model
return c
class HookGroup:
def __init__(self):
self.hooks: List[Hook] = []

View File

@ -108,6 +108,8 @@ class CallbacksMP:
ON_PREPARE_STATE = "on_prepare_state"
ON_APPLY_HOOKS = "on_apply_hooks"
ON_REGISTER_ALL_HOOK_PATCHES = "on_register_all_hook_patches"
ON_INJECT_MODEL = "on_inject_model"
ON_EJECT_MODEL = "on_eject_model"
@classmethod
def init_callbacks(cls):
@ -119,8 +121,37 @@ class CallbacksMP:
cls.ON_PREPARE_STATE: [],
cls.ON_APPLY_HOOKS: [],
cls.ON_REGISTER_ALL_HOOK_PATCHES: [],
cls.ON_INJECT_MODEL: [],
cls.ON_EJECT_MODEL: [],
}
class AutoPatcherEjector:
def __init__(self, model: 'ModelPatcher', skip_until_exit=False):
self.model = model
self.was_injected = False
self.prev_skip_injection = False
self.skip_until_exit = skip_until_exit
def __enter__(self):
self.was_injected = False
self.prev_skip_injection = self.model.skip_injection
if self.skip_until_exit:
self.model.skip_injection = True
if self.model.is_injected:
self.model.eject_model()
self.was_injected = True
def __exit__(self, *args):
if self.was_injected:
if self.skip_until_exit or not self.model.skip_injection:
self.model.inject_model()
self.model.skip_injection = self.prev_skip_injection
class PatcherInjection:
def __init__(self, inject: Callable, eject: Callable):
self.inject = inject
self.eject = eject
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size
@ -143,9 +174,13 @@ class ModelPatcher:
self.patches_uuid = uuid.uuid4()
self.attachments: Dict[str] = {}
self.additional_models: list[ModelPatcher] = []
self.additional_models: Dict[str, List[ModelPatcher]] = {}
self.callbacks: Dict[str, List[Callable]] = CallbacksMP.init_callbacks()
self.is_injected = False
self.skip_injection = False
self.injections: Dict[str, List[PatcherInjection]] = {}
self.hook_patches: Dict[comfy.hooks._HookRef] = {}
self.hook_patches_backup: Dict[comfy.hooks._HookRef] = {}
self.hook_backup: Dict[str, Tuple[torch.Tensor, torch.device]] = {}
@ -196,11 +231,16 @@ class ModelPatcher:
else:
n.attachments[k] = self.attachments[k]
# additional models
for m in self.additional_models:
n.additional_models.append(m.clone())
for k, c in self.additional_models.items():
n.additional_models[k] = [x.clone() for x in c]
# callbacks
for k, c in self.callbacks.items():
n.callbacks[k] = c.copy()
# injection
n.is_injected = self.is_injected
n.skip_injection = self.skip_injection
for k, i in self.injections.items():
n.injections[k] = i.copy()
# hooks
n.hook_patches = create_hook_patches_clone(self.hook_patches)
n.hook_patches_backup = create_hook_patches_clone(self.hook_patches_backup)
@ -342,27 +382,28 @@ class ModelPatcher:
return self.model.get_dtype()
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
with self.use_ejected():
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
if key in model_sd:
p.add(k)
current_patches = self.patches.get(key, [])
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
self.patches[key] = current_patches
if key in model_sd:
p.add(k)
current_patches = self.patches.get(key, [])
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
self.patches[key] = current_patches
self.patches_uuid = uuid.uuid4()
return list(p)
self.patches_uuid = uuid.uuid4()
return list(p)
def get_key_patches(self, filter_prefix=None):
model_sd = self.model_state_dict()
@ -386,13 +427,14 @@ class ModelPatcher:
return p
def model_state_dict(self, filter_prefix=None):
sd = self.model.state_dict()
keys = list(sd.keys())
if filter_prefix is not None:
for k in keys:
if not k.startswith(filter_prefix):
sd.pop(k)
return sd
with self.use_ejected():
sd = self.model.state_dict()
keys = list(sd.keys())
if filter_prefix is not None:
for k in keys:
if not k.startswith(filter_prefix):
sd.pop(k)
return sd
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
@ -417,108 +459,116 @@ class ModelPatcher:
comfy.utils.set_attr_param(self.model, key, out_weight)
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
self.unpatch_hooks()
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
loading = []
for n, m in self.model.named_modules():
if hasattr(m, "comfy_cast_weights") or hasattr(m, "weight"):
loading.append((comfy.model_management.module_size(m), n, m))
with self.use_ejected():
self.unpatch_hooks()
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
loading = []
for n, m in self.model.named_modules():
if hasattr(m, "comfy_cast_weights") or hasattr(m, "weight"):
loading.append((comfy.model_management.module_size(m), n, m))
load_completely = []
loading.sort(reverse=True)
for x in loading:
n = x[1]
m = x[2]
module_mem = x[0]
load_completely = []
loading.sort(reverse=True)
for x in loading:
n = x[1]
m = x[2]
module_mem = x[0]
lowvram_weight = False
lowvram_weight = False
if not full_load and hasattr(m, "comfy_cast_weights"):
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
if not full_load and hasattr(m, "comfy_cast_weights"):
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
if hasattr(m, "prev_comfy_cast_weights"): #Already lowvramed
continue
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if lowvram_weight:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
else:
if hasattr(m, "comfy_cast_weights"):
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
if hasattr(m, "weight"):
mem_counter += module_mem
load_completely.append((module_mem, n, m))
load_completely.sort(reverse=True)
for x in load_completely:
n = x[1]
m = x[2]
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True:
continue
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
self.patch_weight_to_device(weight_key, device_to=device_to)
self.patch_weight_to_device(bias_key, device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
if lowvram_weight:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
for x in load_completely:
x[2].to(device_to)
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
if lowvram_counter > 0:
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
if hasattr(m, "comfy_cast_weights"):
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
mem_counter = self.model_size()
if hasattr(m, "weight"):
mem_counter += module_mem
load_completely.append((module_mem, n, m))
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
load_completely.sort(reverse=True)
for x in load_completely:
n = x[1]
m = x[2]
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True:
continue
for callback in self.callbacks[CallbacksMP.ON_LOAD]:
callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)
self.patch_weight_to_device(weight_key, device_to=device_to)
self.patch_weight_to_device(bias_key, device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
for x in load_completely:
x[2].to(device_to)
if lowvram_counter > 0:
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
mem_counter = self.model_size()
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
self.apply_hooks(self.forced_hooks)
self.apply_hooks(self.forced_hooks)
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
for k in self.object_patches:
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
with self.use_ejected():
for k in self.object_patches:
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
if lowvram_model_memory == 0:
full_load = True
else:
full_load = False
if lowvram_model_memory == 0:
full_load = True
else:
full_load = False
if load_weights:
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
if load_weights:
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
self.inject_model()
return self.model
def unpatch_model(self, device_to=None, unpatch_weights=True):
self.eject_model()
if unpatch_weights:
self.unpatch_hooks()
if self.model.model_lowvram:
@ -555,66 +605,68 @@ class ModelPatcher:
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0):
memory_freed = 0
patch_counter = 0
unload_list = []
with self.use_ejected():
memory_freed = 0
patch_counter = 0
unload_list = []
for n, m in self.model.named_modules():
shift_lowvram = False
if hasattr(m, "comfy_cast_weights"):
module_mem = comfy.model_management.module_size(m)
unload_list.append((module_mem, n, m))
for n, m in self.model.named_modules():
shift_lowvram = False
if hasattr(m, "comfy_cast_weights"):
module_mem = comfy.model_management.module_size(m)
unload_list.append((module_mem, n, m))
unload_list.sort()
for unload in unload_list:
if memory_to_free < memory_freed:
break
module_mem = unload[0]
n = unload[1]
m = unload[2]
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
unload_list.sort()
for unload in unload_list:
if memory_to_free < memory_freed:
break
module_mem = unload[0]
n = unload[1]
m = unload[2]
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
for key in [weight_key, bias_key]:
bk = self.backup.get(key, None)
if bk is not None:
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight)
else:
comfy.utils.set_attr_param(self.model, key, bk.weight)
self.backup.pop(key)
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
for key in [weight_key, bias_key]:
bk = self.backup.get(key, None)
if bk is not None:
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight)
else:
comfy.utils.set_attr_param(self.model, key, bk.weight)
self.backup.pop(key)
m.to(device_to)
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
m.to(device_to)
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self.patches)
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self.patches)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
logging.debug("freed {}".format(n))
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
logging.debug("freed {}".format(n))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
return memory_freed
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
return memory_freed
def partially_load(self, device_to, extra_memory=0):
self.unpatch_model(unpatch_weights=False)
self.patch_model(load_weights=False)
full_load = False
if self.model.model_lowvram == False:
return 0
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
full_load = True
current_used = self.model.model_loaded_weight_memory
self.load(device_to, lowvram_model_memory=current_used + extra_memory, full_load=full_load)
return self.model.model_loaded_weight_memory - current_used
with self.use_ejected(skip_injection=True):
self.unpatch_model(unpatch_weights=False)
self.patch_model(load_weights=False)
full_load = False
if self.model.model_lowvram == False:
return 0
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
full_load = True
current_used = self.model.model_loaded_weight_memory
self.load(device_to, lowvram_model_memory=current_used + extra_memory, full_load=full_load)
return self.model.model_loaded_weight_memory - current_used
def current_loaded_device(self):
return self.model.device
@ -629,13 +681,49 @@ class ModelPatcher:
for callback in self.callbacks[CallbacksMP.ON_CLEANUP]:
callback(self)
def add_callback(self, key, callback: Callable):
def get_all_additional_models(self):
all_models = []
for models in self.additional_models.values():
all_models.extend(models)
return all_models
def add_callback(self, key: str, callback: Callable):
if key not in self.callbacks:
raise Exception(f"Callback '{key}' is not recognized.")
self.callbacks[key].append(callback)
def add_attachment(self, attachment):
self.attachments.append(attachment)
def set_attachments(self, key: str, attachment):
self.attachments[key] = attachment
def set_injections(self, key: str, injections: List[PatcherInjection]):
self.injections[key] = injections
def set_additional_models(self, key: str, models: List['ModelPatcher']):
self.additional_models[key] = models
def use_ejected(self, skip_injection=False):
return AutoPatcherEjector(self, skip_until_exit=skip_injection)
def inject_model(self):
if self.is_injected or self.skip_injection:
return
for injections in self.injections.values():
for inj in injections:
inj.inject(self)
self.is_injected = True
if self.is_injected:
for callback in self.callbacks[CallbacksMP.ON_INJECT_MODEL]:
callback(self)
def eject_model(self):
if not self.is_injected:
return
for injections in self.injections.values():
for inj in injections:
inj.eject(self)
self.is_injected = False
for callback in self.callbacks[CallbacksMP.ON_EJECT_MODEL]:
callback(self)
def pre_run(self):
for callback in self.callbacks[CallbacksMP.ON_PRE_RUN]:
@ -685,58 +773,60 @@ class ModelPatcher:
callback(self, hooks_dict, target)
def add_hook_patches(self, hook: comfy.hooks.WeightHook, patches, strength_patch=1.0, strength_model=1.0, is_diff=False):
# NOTE: this mirrors behavior of add_patches func
if is_diff:
comfy.model_management.unload_model_clones(self)
current_hook_patches: Dict[str,List] = self.hook_patches.get(hook.hook_ref, {})
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
if key in model_sd:
p.add(k)
current_patches: List[Tuple] = current_hook_patches.get(key, [])
if is_diff:
# take difference between desired weight and existing weight to get diff
# TODO: try to implement diff via strength_path/strength_model diff
model_dtype = comfy.utils.get_attr(self.model, key).dtype
if model_dtype in [torch.float8_e5m2, torch.float8_e4m3fn]:
diff_weight = (patches[k].to(torch.float32)-comfy.utils.get_attr(self.model, key).to(torch.float32)).to(model_dtype)
else:
diff_weight = patches[k]-comfy.utils.get_attr(self.model, key)
current_patches.append((strength_patch, (diff_weight,), strength_model, offset, function))
with self.use_ejected():
# NOTE: this mirrors behavior of add_patches func
if is_diff:
comfy.model_management.unload_model_clones(self)
current_hook_patches: Dict[str,List] = self.hook_patches.get(hook.hook_ref, {})
p = set()
model_sd = self.model.state_dict()
for k in patches:
offset = None
function = None
if isinstance(k, str):
key = k
else:
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
current_hook_patches[key] = current_patches
self.hook_patches[hook.hook_ref] = current_hook_patches
# since should care about these patches too to determine if same model, reroll patches_uuid
self.patches_uuid = uuid.uuid4()
return list(p)
offset = k[1]
key = k[0]
if len(k) > 2:
function = k[2]
if key in model_sd:
p.add(k)
current_patches: List[Tuple] = current_hook_patches.get(key, [])
if is_diff:
# take difference between desired weight and existing weight to get diff
# TODO: try to implement diff via strength_path/strength_model diff
model_dtype = comfy.utils.get_attr(self.model, key).dtype
if model_dtype in [torch.float8_e5m2, torch.float8_e4m3fn]:
diff_weight = (patches[k].to(torch.float32)-comfy.utils.get_attr(self.model, key).to(torch.float32)).to(model_dtype)
else:
diff_weight = patches[k]-comfy.utils.get_attr(self.model, key)
current_patches.append((strength_patch, (diff_weight,), strength_model, offset, function))
else:
current_patches.append((strength_patch, patches[k], strength_model, offset, function))
current_hook_patches[key] = current_patches
self.hook_patches[hook.hook_ref] = current_hook_patches
# since should care about these patches too to determine if same model, reroll patches_uuid
self.patches_uuid = uuid.uuid4()
return list(p)
def get_weight_diffs(self, patches):
comfy.model_management.unload_model_clones(self)
weights: Dict[str, Tuple] = {}
p = set()
model_sd = self.model.state_dict()
for k in patches:
if k in model_sd:
p.add(k)
model_dtype = comfy.utils.get_attr(self.model, k).dtype
if model_dtype in [torch.float8_e5m2, torch.float8_e4m3fn]:
diff_weight = (patches[k].to(torch.float32)-comfy.utils.get_attr(self.model, k).to(torch.float32)).to(model_dtype)
else:
diff_weight = patches[k]-comfy.utils.get_attr(self.model, k)
weights[k] = (diff_weight,)
return weights, p
with self.use_ejected():
comfy.model_management.unload_model_clones(self)
weights: Dict[str, Tuple] = {}
p = set()
model_sd = self.model.state_dict()
for k in patches:
if k in model_sd:
p.add(k)
model_dtype = comfy.utils.get_attr(self.model, k).dtype
if model_dtype in [torch.float8_e5m2, torch.float8_e4m3fn]:
diff_weight = (patches[k].to(torch.float32)-comfy.utils.get_attr(self.model, k).to(torch.float32)).to(model_dtype)
else:
diff_weight = patches[k]-comfy.utils.get_attr(self.model, k)
weights[k] = (diff_weight,)
return weights, p
def get_combined_hook_patches(self, hooks: comfy.hooks.HookGroup):
# combined_patches will contain weights of all relevant hooks, per key
@ -765,27 +855,28 @@ class ModelPatcher:
callback(self, hooks)
def patch_hooks(self, hooks: comfy.hooks.HookGroup):
self.unpatch_hooks()
model_sd = self.model_state_dict()
# if have cached weights for hooks, use it
cached_weights = self.cached_hook_patches.get(hooks, None)
if cached_weights is not None:
for key in cached_weights:
if key not in model_sd:
print(f"WARNING cached hook could not patch. key does not exist in model: {key}")
continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key)
else:
relevant_patches = self.get_combined_hook_patches(hooks=hooks)
original_weights = None
if len(relevant_patches) > 0:
original_weights = self.get_key_patches()
for key in relevant_patches:
if key not in model_sd:
print(f"WARNING cached hook would not patch. key does not exist in model: {key}")
continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights)
self.current_hooks = hooks
with self.use_ejected():
self.unpatch_hooks()
model_sd = self.model_state_dict()
# if have cached weights for hooks, use it
cached_weights = self.cached_hook_patches.get(hooks, None)
if cached_weights is not None:
for key in cached_weights:
if key not in model_sd:
print(f"WARNING cached hook could not patch. key does not exist in model: {key}")
continue
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key)
else:
relevant_patches = self.get_combined_hook_patches(hooks=hooks)
original_weights = None
if len(relevant_patches) > 0:
original_weights = self.get_key_patches()
for key in relevant_patches:
if key not in model_sd:
print(f"WARNING cached hook would not patch. key does not exist in model: {key}")
continue
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights)
self.current_hooks = hooks
def patch_cached_hook_weights(self, cached_weights: Dict, key: str):
if key not in self.hook_backup:
@ -825,25 +916,26 @@ class ModelPatcher:
comfy.utils.set_attr_param(self.model, key, out_weight)
def unpatch_hooks(self) -> None:
if len(self.hook_backup) == 0:
with self.use_ejected():
if len(self.hook_backup) == 0:
self.current_hooks = None
return
keys = list(self.hook_backup.keys())
if self.weight_inplace_update:
for k in keys:
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: # does not need to be cast; device already matches
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0])
else:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
else:
for k in keys:
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
comfy.utils.set_attr_param(self.model, k, self.hook_backup[k][0])
else:
comfy.utils.set_attr_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.clear()
self.current_hooks = None
return
keys = list(self.hook_backup.keys())
if self.weight_inplace_update:
for k in keys:
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed: # does not need to be cast; device already matches
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0])
else:
comfy.utils.copy_to_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
else:
for k in keys:
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
comfy.utils.set_attr_param(self.model, k, self.hook_backup[k][0])
else:
comfy.utils.set_attr_param(self.model, k, self.hook_backup[k][0].to(device=self.hook_backup[k][1]))
self.hook_backup.clear()
self.current_hooks = None
def clean_hooks(self):
self.unpatch_hooks()

View File

@ -2,6 +2,11 @@ import torch
import comfy.model_management
import comfy.conds
import comfy.hooks
from typing import TYPE_CHECKING, Dict, List
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel
from comfy.controlnet import ControlBase
def prepare_mask(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""
@ -15,9 +20,22 @@ def get_models_from_cond(cond, model_type):
models = []
for c in cond:
if model_type in c:
models += [c[model_type]]
if isinstance(c[model_type], list):
models += c[model_type]
else:
models += [c[model_type]]
return models
def get_hooks_from_cond(cond, filter_types: List[comfy.hooks.EnumHookType]=None):
hooks: Dict[comfy.hooks.Hook, None] = {}
for c in cond:
if 'hooks' in c:
for hook in c['hooks'].hooks:
hook: comfy.hooks.Hook
if not filter_types or hook.hook_type in filter_types:
hooks[hook] = None
return hooks
def convert_cond(cond):
out = []
for c in cond:
@ -32,12 +50,16 @@ def convert_cond(cond):
def get_additional_models(conds, dtype):
"""loads additional models in conditioning"""
cnets = []
cnets: List[ControlBase] = []
gligen = []
add_models = []
hooks: Dict[comfy.hooks.AddModelHook, None] = {}
for k in conds:
cnets += get_models_from_cond(conds[k], "control")
gligen += get_models_from_cond(conds[k], "gligen")
add_models += get_models_from_cond(conds[k], "additional_models")
hooks.update(get_hooks_from_cond(conds[k], [comfy.hooks.EnumHookType.AddModel]))
control_nets = set(cnets)
@ -48,7 +70,9 @@ def get_additional_models(conds, dtype):
inference_memory += m.inference_memory_requirements(dtype)
gligen = [x[1] for x in gligen]
models = control_models + gligen
hook_models = [x.model for x in hooks]
models = control_models + gligen + add_models + hook_models
return models, inference_memory
def cleanup_additional_models(models):
@ -58,10 +82,11 @@ def cleanup_additional_models(models):
m.cleanup()
def prepare_sampling(model, noise_shape, conds):
def prepare_sampling(model: 'ModelPatcher', noise_shape, conds):
device = model.load_device
real_model = None
real_model: 'BaseModel' = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += model.get_all_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
@ -79,12 +104,9 @@ def cleanup_models(conds, models):
cleanup_additional_models(set(control_cleanup))
def prepare_model_patcher(model, conds):
def prepare_model_patcher(model: 'ModelPatcher', conds):
# check for hooks in conds - if not registered, see if can be applied
hooks = {}
for k in conds:
for cond in conds[k]:
if 'hooks' in cond:
for hook in cond['hooks'].hooks:
hooks[hook] = None
hooks.update(get_hooks_from_cond(conds[k]))
model.register_all_hook_patches(hooks, comfy.hooks.EnumWeightTarget.Model)