Remove omegaconf dependency and some ci changes.

This commit is contained in:
comfyanonymous 2023-03-13 14:49:18 -04:00
parent 80665081e0
commit 54dbfaf2ec
8 changed files with 26 additions and 22 deletions

View File

@ -5,11 +5,12 @@ cd python_embeded
Add-Content -Path .\python310._pth -Value 'import site' Add-Content -Path .\python310._pth -Value 'import site'
Invoke-WebRequest -Uri https://bootstrap.pypa.io/get-pip.py -OutFile get-pip.py Invoke-WebRequest -Uri https://bootstrap.pypa.io/get-pip.py -OutFile get-pip.py
.\python.exe get-pip.py .\python.exe get-pip.py
.\python.exe -s -m pip install torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2 python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
.\python.exe -s -m pip install --pre (get-item ..\temp_wheel_dir\*)
"../ComfyUI`n" + (Get-Content .\python310._pth -Raw) | Set-Content .\python310._pth "../ComfyUI`n" + (Get-Content .\python310._pth -Raw) | Set-Content .\python310._pth
cd .. cd ..
mkdir ComfyUI_windows_portable mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable_nightly_pytorch mv python_embeded ComfyUI_windows_portable_nightly_pytorch
mv ComfyUI_copy ComfyUI_windows_portable_nightly_pytorch/ComfyUI mv ComfyUI_copy ComfyUI_windows_portable_nightly_pytorch/ComfyUI

View File

@ -25,10 +25,11 @@ jobs:
.\setup_windows_zip.ps1 .\setup_windows_zip.ps1
ls ls
- uses: "marvinpinto/action-automatic-releases@latest" - name: Upload binaries to release
uses: svenstaro/upload-release-action@v2
with: with:
repo_token: "${{ secrets.GITHUB_TOKEN }}" repo_token: ${{ secrets.GITHUB_TOKEN }}
automatic_release_tag: "latest" file: ComfyUI_windows_portable_nvidia_or_cpu.7z
prerelease: true tag: "latest"
title: "ComfyUI Standalone Portable Windows Build (For NVIDIA or CPU only)" overwrite: true
files: ComfyUI_windows_portable_nvidia_or_cpu.7z

View File

@ -17,7 +17,9 @@ jobs:
- uses: actions/checkout@v3 - uses: actions/checkout@v3
with: with:
fetch-depth: 0 fetch-depth: 0
- uses: actions/setup-python@v4
with:
python-version: '3.10.9'
- run: | - run: |
cd .. cd ..
cp ComfyUI/.ci/setup_windows_zip_nightly_pytorch.ps1 ./ cp ComfyUI/.ci/setup_windows_zip_nightly_pytorch.ps1 ./

View File

@ -59,9 +59,9 @@ class ControlNet(nn.Module):
if context_dim is not None: if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig # from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig: # if type(context_dim) == ListConfig:
context_dim = list(context_dim) # context_dim = list(context_dim)
if num_heads_upsample == -1: if num_heads_upsample == -1:
num_heads_upsample = num_heads num_heads_upsample = num_heads

View File

@ -18,7 +18,6 @@ import itertools
from tqdm import tqdm from tqdm import tqdm
from torchvision.utils import make_grid from torchvision.utils import make_grid
# from pytorch_lightning.utilities.distributed import rank_zero_only # from pytorch_lightning.utilities.distributed import rank_zero_only
from omegaconf import ListConfig
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.modules.ema import LitEma from ldm.modules.ema import LitEma
@ -1124,8 +1123,8 @@ class LatentDiffusion(DDPM):
def get_unconditional_conditioning(self, batch_size, null_label=None): def get_unconditional_conditioning(self, batch_size, null_label=None):
if null_label is not None: if null_label is not None:
xc = null_label xc = null_label
if isinstance(xc, ListConfig): # if isinstance(xc, ListConfig):
xc = list(xc) # xc = list(xc)
if isinstance(xc, dict) or isinstance(xc, list): if isinstance(xc, dict) or isinstance(xc, list):
c = self.get_learned_conditioning(xc) c = self.get_learned_conditioning(xc)
else: else:

View File

@ -477,9 +477,9 @@ class UNetModel(nn.Module):
if context_dim is not None: if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig # from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig: # if type(context_dim) == ListConfig:
context_dim = list(context_dim) # context_dim = list(context_dim)
if num_heads_upsample == -1: if num_heads_upsample == -1:
num_heads_upsample = num_heads num_heads_upsample = num_heads

View File

@ -6,7 +6,7 @@ import sd2_clip
import model_management import model_management
from .ldm.util import instantiate_from_config from .ldm.util import instantiate_from_config
from .ldm.models.autoencoder import AutoencoderKL from .ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf import yaml
from .cldm import cldm from .cldm import cldm
from .t2i_adapter import adapter from .t2i_adapter import adapter
@ -726,7 +726,8 @@ def load_clip(ckpt_path, embedding_directory=None):
return clip return clip
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None): def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
config = OmegaConf.load(config_path) with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
model_config_params = config['model']['params'] model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config'] clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor'] scale_factor = model_config_params['scale_factor']
@ -750,7 +751,7 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
w.cond_stage_model = clip.cond_stage_model w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w] load_state_dict_to = [w]
model = instantiate_from_config(config.model) model = instantiate_from_config(config["model"])
sd = load_torch_file(ckpt_path) sd = load_torch_file(ckpt_path)
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
return (ModelPatcher(model), clip, vae) return (ModelPatcher(model), clip, vae)

View File

@ -1,7 +1,6 @@
torch torch
torchdiffeq torchdiffeq
torchsde torchsde
omegaconf
einops einops
open-clip-torch open-clip-torch
transformers transformers
@ -9,3 +8,4 @@ safetensors
pytorch_lightning pytorch_lightning
aiohttp aiohttp
accelerate accelerate
pyyaml