Remove omegaconf dependency and some ci changes.
This commit is contained in:
parent
80665081e0
commit
54dbfaf2ec
|
@ -5,11 +5,12 @@ cd python_embeded
|
|||
Add-Content -Path .\python310._pth -Value 'import site'
|
||||
Invoke-WebRequest -Uri https://bootstrap.pypa.io/get-pip.py -OutFile get-pip.py
|
||||
.\python.exe get-pip.py
|
||||
.\python.exe -s -m pip install torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2
|
||||
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu118 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
|
||||
ls ../temp_wheel_dir
|
||||
.\python.exe -s -m pip install --pre (get-item ..\temp_wheel_dir\*)
|
||||
"../ComfyUI`n" + (Get-Content .\python310._pth -Raw) | Set-Content .\python310._pth
|
||||
cd ..
|
||||
|
||||
|
||||
mkdir ComfyUI_windows_portable
|
||||
mv python_embeded ComfyUI_windows_portable_nightly_pytorch
|
||||
mv ComfyUI_copy ComfyUI_windows_portable_nightly_pytorch/ComfyUI
|
||||
|
|
|
@ -25,10 +25,11 @@ jobs:
|
|||
.\setup_windows_zip.ps1
|
||||
ls
|
||||
|
||||
- uses: "marvinpinto/action-automatic-releases@latest"
|
||||
- name: Upload binaries to release
|
||||
uses: svenstaro/upload-release-action@v2
|
||||
with:
|
||||
repo_token: "${{ secrets.GITHUB_TOKEN }}"
|
||||
automatic_release_tag: "latest"
|
||||
prerelease: true
|
||||
title: "ComfyUI Standalone Portable Windows Build (For NVIDIA or CPU only)"
|
||||
files: ComfyUI_windows_portable_nvidia_or_cpu.7z
|
||||
repo_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
file: ComfyUI_windows_portable_nvidia_or_cpu.7z
|
||||
tag: "latest"
|
||||
overwrite: true
|
||||
|
||||
|
|
|
@ -17,7 +17,9 @@ jobs:
|
|||
- uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.10.9'
|
||||
- run: |
|
||||
cd ..
|
||||
cp ComfyUI/.ci/setup_windows_zip_nightly_pytorch.ps1 ./
|
||||
|
|
|
@ -59,9 +59,9 @@ class ControlNet(nn.Module):
|
|||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
|
|
@ -18,7 +18,6 @@ import itertools
|
|||
from tqdm import tqdm
|
||||
from torchvision.utils import make_grid
|
||||
# from pytorch_lightning.utilities.distributed import rank_zero_only
|
||||
from omegaconf import ListConfig
|
||||
|
||||
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
||||
from ldm.modules.ema import LitEma
|
||||
|
@ -1124,8 +1123,8 @@ class LatentDiffusion(DDPM):
|
|||
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
||||
if null_label is not None:
|
||||
xc = null_label
|
||||
if isinstance(xc, ListConfig):
|
||||
xc = list(xc)
|
||||
# if isinstance(xc, ListConfig):
|
||||
# xc = list(xc)
|
||||
if isinstance(xc, dict) or isinstance(xc, list):
|
||||
c = self.get_learned_conditioning(xc)
|
||||
else:
|
||||
|
|
|
@ -477,9 +477,9 @@ class UNetModel(nn.Module):
|
|||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
from omegaconf.listconfig import ListConfig
|
||||
if type(context_dim) == ListConfig:
|
||||
context_dim = list(context_dim)
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
|
|
@ -6,7 +6,7 @@ import sd2_clip
|
|||
import model_management
|
||||
from .ldm.util import instantiate_from_config
|
||||
from .ldm.models.autoencoder import AutoencoderKL
|
||||
from omegaconf import OmegaConf
|
||||
import yaml
|
||||
from .cldm import cldm
|
||||
from .t2i_adapter import adapter
|
||||
|
||||
|
@ -726,7 +726,8 @@ def load_clip(ckpt_path, embedding_directory=None):
|
|||
return clip
|
||||
|
||||
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None):
|
||||
config = OmegaConf.load(config_path)
|
||||
with open(config_path, 'r') as stream:
|
||||
config = yaml.safe_load(stream)
|
||||
model_config_params = config['model']['params']
|
||||
clip_config = model_config_params['cond_stage_config']
|
||||
scale_factor = model_config_params['scale_factor']
|
||||
|
@ -750,7 +751,7 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
|
|||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_state_dict_to = [w]
|
||||
|
||||
model = instantiate_from_config(config.model)
|
||||
model = instantiate_from_config(config["model"])
|
||||
sd = load_torch_file(ckpt_path)
|
||||
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
torch
|
||||
torchdiffeq
|
||||
torchsde
|
||||
omegaconf
|
||||
einops
|
||||
open-clip-torch
|
||||
transformers
|
||||
|
@ -9,3 +8,4 @@ safetensors
|
|||
pytorch_lightning
|
||||
aiohttp
|
||||
accelerate
|
||||
pyyaml
|
||||
|
|
Loading…
Reference in New Issue