Add DEIS order 3 sampler.
Order 4 seems to give bad results.
This commit is contained in:
parent
175fe02522
commit
44947e7ad4
|
@ -0,0 +1,122 @@
|
|||
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
|
||||
#under Apache 2 license
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
|
||||
#############################
|
||||
### Utils for DEIS solver ###
|
||||
#############################
|
||||
#----------------------------------------------------------------------------
|
||||
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
|
||||
|
||||
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
|
||||
vp_sigma = lambda beta_d, beta_min: lambda t: (np.e ** (0.5 * beta_d * (t ** 2) + beta_min * t) - 1) ** 0.5
|
||||
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
|
||||
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
|
||||
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
|
||||
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
|
||||
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
|
||||
def cal_poly(prev_t, j, taus):
|
||||
poly = 1
|
||||
for k in range(prev_t.shape[0]):
|
||||
if k == j:
|
||||
continue
|
||||
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
|
||||
return poly
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
# Transfer from t to alpha_t.
|
||||
|
||||
def t2alpha_fn(beta_0, beta_1, t):
|
||||
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
|
||||
def cal_intergrand(beta_0, beta_1, taus):
|
||||
with torch.inference_mode(mode=False):
|
||||
taus = taus.clone()
|
||||
beta_0 = beta_0.clone()
|
||||
beta_1 = beta_1.clone()
|
||||
with torch.enable_grad():
|
||||
taus.requires_grad_(True)
|
||||
alpha = t2alpha_fn(beta_0, beta_1, taus)
|
||||
log_alpha = alpha.log()
|
||||
log_alpha.sum().backward()
|
||||
d_log_alpha_dtau = taus.grad
|
||||
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
|
||||
return integrand
|
||||
|
||||
#----------------------------------------------------------------------------
|
||||
|
||||
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
|
||||
"""
|
||||
Get the coefficient list for DEIS sampling.
|
||||
|
||||
Args:
|
||||
t_steps: A pytorch tensor. The time steps for sampling.
|
||||
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
|
||||
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
|
||||
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
|
||||
Returns:
|
||||
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
|
||||
"""
|
||||
if deis_mode == 'tab':
|
||||
t_steps, beta_0, beta_1 = edm2t(t_steps)
|
||||
C = []
|
||||
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
||||
order = min(i+1, max_order)
|
||||
if order == 1:
|
||||
C.append([])
|
||||
else:
|
||||
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
|
||||
dtau = (t_next - t_cur) / N
|
||||
prev_t = t_steps[[i - k for k in range(order)]]
|
||||
coeff_temp = []
|
||||
integrand = cal_intergrand(beta_0, beta_1, taus)
|
||||
for j in range(order):
|
||||
poly = cal_poly(prev_t, j, taus)
|
||||
coeff_temp.append(torch.sum(integrand * poly) * dtau)
|
||||
C.append(coeff_temp)
|
||||
|
||||
elif deis_mode == 'rhoab':
|
||||
# Analytical solution, second order
|
||||
def get_def_intergral_2(a, b, start, end, c):
|
||||
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
|
||||
return coeff / ((c - a) * (c - b))
|
||||
|
||||
# Analytical solution, third order
|
||||
def get_def_intergral_3(a, b, c, start, end, d):
|
||||
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
|
||||
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
|
||||
return coeff / ((d - a) * (d - b) * (d - c))
|
||||
|
||||
C = []
|
||||
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
|
||||
order = min(i, max_order)
|
||||
if order == 0:
|
||||
C.append([])
|
||||
else:
|
||||
prev_t = t_steps[[i - k for k in range(order+1)]]
|
||||
if order == 1:
|
||||
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
|
||||
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
|
||||
coeff_temp = [coeff_cur, coeff_prev1]
|
||||
elif order == 2:
|
||||
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
|
||||
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
|
||||
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
|
||||
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
|
||||
elif order == 3:
|
||||
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
|
||||
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
|
||||
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
|
||||
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
|
||||
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
|
||||
C.append(coeff_temp)
|
||||
print(C)
|
||||
return C
|
||||
|
|
@ -7,6 +7,7 @@ import torchsde
|
|||
from tqdm.auto import trange, tqdm
|
||||
|
||||
from . import utils
|
||||
from . import deis
|
||||
import comfy.model_patcher
|
||||
|
||||
def append_zero(x):
|
||||
|
@ -946,6 +947,55 @@ def sample_ipndm_v(model, x, sigmas, extra_args=None, callback=None, disable=Non
|
|||
|
||||
return x_next
|
||||
|
||||
#From https://github.com/zju-pi/diff-sampler/blob/main/diff-solvers-main/solvers.py
|
||||
#under Apache 2 license
|
||||
@torch.no_grad()
|
||||
def sample_deis(model, x, sigmas, extra_args=None, callback=None, disable=None, max_order=3, deis_mode='tab'):
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
x_next = x
|
||||
t_steps = sigmas
|
||||
|
||||
coeff_list = deis.get_deis_coeff_list(t_steps, max_order, deis_mode=deis_mode)
|
||||
|
||||
buffer_model = []
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
t_cur = sigmas[i]
|
||||
t_next = sigmas[i + 1]
|
||||
|
||||
x_cur = x_next
|
||||
|
||||
denoised = model(x_cur, t_cur * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
|
||||
d_cur = (x_cur - denoised) / t_cur
|
||||
|
||||
order = min(max_order, i+1)
|
||||
if t_next <= 0:
|
||||
order = 1
|
||||
|
||||
if order == 1: # First Euler step.
|
||||
x_next = x_cur + (t_next - t_cur) * d_cur
|
||||
elif order == 2: # Use one history point.
|
||||
coeff_cur, coeff_prev1 = coeff_list[i]
|
||||
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1]
|
||||
elif order == 3: # Use two history points.
|
||||
coeff_cur, coeff_prev1, coeff_prev2 = coeff_list[i]
|
||||
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2]
|
||||
elif order == 4: # Use three history points.
|
||||
coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3 = coeff_list[i]
|
||||
x_next = x_cur + coeff_cur * d_cur + coeff_prev1 * buffer_model[-1] + coeff_prev2 * buffer_model[-2] + coeff_prev3 * buffer_model[-3]
|
||||
|
||||
if len(buffer_model) == max_order - 1:
|
||||
for k in range(max_order - 2):
|
||||
buffer_model[k] = buffer_model[k+1]
|
||||
buffer_model[-1] = d_cur.detach()
|
||||
else:
|
||||
buffer_model.append(d_cur.detach())
|
||||
|
||||
return x_next
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None):
|
||||
|
|
|
@ -540,7 +540,7 @@ class Sampler:
|
|||
KSAMPLER_NAMES = ["euler", "euler_pp", "euler_ancestral", "euler_ancestral_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v"]
|
||||
"ipndm", "ipndm_v", "deis"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
|
Loading…
Reference in New Issue