Nodes to properly use the SDV img2vid checkpoint.
The img2vid model is conditioned on clip vision output only which means there's no CLIP model which is why I added a ImageOnlyCheckpointLoader to load it. Note that the unClipCheckpointLoader can also load it because it also has a CLIP_VISION output. SDV_img2vid_Conditioning is the node used to pass the right conditioning to the img2vid model. VideoLinearCFGGuidance applies a linearly decreasing CFG scale to each video frame from the cfg set in the sampler node to min_cfg. SDV_img2vid_Conditioning can be found in conditioning->video_models ImageOnlyCheckpointLoader can be found in loaders->video_models VideoLinearCFGGuidance can be found in sampling->video_models
This commit is contained in:
parent
871cc20e13
commit
42dfae6331
|
@ -0,0 +1,89 @@
|
|||
import nodes
|
||||
import torch
|
||||
import comfy.utils
|
||||
import comfy.sd
|
||||
import folder_paths
|
||||
|
||||
|
||||
class ImageOnlyCheckpointLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL", "CLIP_VISION", "VAE")
|
||||
FUNCTION = "load_checkpoint"
|
||||
|
||||
CATEGORY = "loaders/video_models"
|
||||
|
||||
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
||||
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
|
||||
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=False, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
||||
return (out[0], out[3], out[2])
|
||||
|
||||
|
||||
class SDV_img2vid_Conditioning:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "clip_vision": ("CLIP_VISION",),
|
||||
"init_image": ("IMAGE",),
|
||||
"vae": ("VAE",),
|
||||
"width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"height": ("INT", {"default": 576, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
|
||||
"video_frames": ("INT", {"default": 14, "min": 1, "max": 4096}),
|
||||
"motion_bucket_id": ("INT", {"default": 127, "min": 1, "max": 1023}),
|
||||
"fps": ("INT", {"default": 6, "min": 1, "max": 1024}),
|
||||
"augmentation_level": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
||||
RETURN_NAMES = ("positive", "negative", "latent")
|
||||
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/video_models"
|
||||
|
||||
def encode(self, clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level):
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
encode_pixels = pixels[:,:,:,:3]
|
||||
if augmentation_level > 0:
|
||||
encode_pixels += torch.randn_like(pixels) * augmentation_level
|
||||
t = vae.encode(encode_pixels)
|
||||
positive = [[pooled, {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": t}]]
|
||||
negative = [[torch.zeros_like(pooled), {"motion_bucket_id": motion_bucket_id, "fps": fps, "augmentation_level": augmentation_level, "concat_latent_image": torch.zeros_like(t)}]]
|
||||
latent = torch.zeros([video_frames, 4, height // 8, width // 8])
|
||||
return (positive, negative, {"samples":latent})
|
||||
|
||||
class VideoLinearCFGGuidance:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"min_cfg": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.5, "round": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "sampling/video_models"
|
||||
|
||||
def patch(self, model, min_cfg):
|
||||
def linear_cfg(args):
|
||||
cond = args["cond"]
|
||||
uncond = args["uncond"]
|
||||
cond_scale = args["cond_scale"]
|
||||
|
||||
scale = torch.linspace(min_cfg, cond_scale, cond.shape[0], device=cond.device).reshape((cond.shape[0], 1, 1, 1))
|
||||
return uncond + scale * (cond - uncond)
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_sampler_cfg_function(linear_cfg)
|
||||
return (m, )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ImageOnlyCheckpointLoader": ImageOnlyCheckpointLoader,
|
||||
"SDV_img2vid_Conditioning": SDV_img2vid_Conditioning,
|
||||
"VideoLinearCFGGuidance": VideoLinearCFGGuidance,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageOnlyCheckpointLoader": "Image Only Checkpoint Loader (img2vid model)",
|
||||
}
|
Loading…
Reference in New Issue