Add some new weight patching functionality.

Add a way to reshape lora weights.

Allow weight patches to all weight not just .weight and .bias

Add a way for a lora to set a weight to a specific value.
This commit is contained in:
comfyanonymous 2024-11-21 07:19:17 -05:00
parent 772e620e32
commit 41444b5236
2 changed files with 43 additions and 15 deletions

View File

@ -49,6 +49,15 @@ def load_lora(lora, to_load):
dora_scale = lora[dora_scale_name] dora_scale = lora[dora_scale_name]
loaded_keys.add(dora_scale_name) loaded_keys.add(dora_scale_name)
reshape_name = "{}.reshape_weight".format(x)
reshape = None
if reshape_name in lora.keys():
try:
reshape = lora[reshape_name].tolist()
loaded_keys.add(reshape_name)
except:
pass
regular_lora = "{}.lora_up.weight".format(x) regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x) diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x) diffusers2_lora = "{}.lora_B.weight".format(x)
@ -82,7 +91,7 @@ def load_lora(lora, to_load):
if mid_name is not None and mid_name in lora.keys(): if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name] mid = lora[mid_name]
loaded_keys.add(mid_name) loaded_keys.add(mid_name)
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale)) patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
loaded_keys.add(A_name) loaded_keys.add(A_name)
loaded_keys.add(B_name) loaded_keys.add(B_name)
@ -193,6 +202,12 @@ def load_lora(lora, to_load):
patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
loaded_keys.add(diff_bias_name) loaded_keys.add(diff_bias_name)
set_weight_name = "{}.set_weight".format(x)
set_weight = lora.get(set_weight_name, None)
if set_weight is not None:
patch_dict[to_load[x]] = ("set", (set_weight,))
loaded_keys.add(set_weight_name)
for x in lora.keys(): for x in lora.keys():
if x not in loaded_keys: if x not in loaded_keys:
logging.warning("lora key not loaded: {}".format(x)) logging.warning("lora key not loaded: {}".format(x))
@ -282,11 +297,14 @@ def model_lora_keys_unet(model, key_map={}):
sdk = sd.keys() sdk = sd.keys()
for k in sdk: for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): if k.startswith("diffusion_model."):
if k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k key_map["lora_unet_{}".format(key_lora)] = k
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
else:
key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys: for k in diffusers_keys:
@ -440,10 +458,17 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape)) logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
else: else:
weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype)) weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
elif patch_type == "set":
weight.copy_(v[0])
elif patch_type == "lora": #lora/locon elif patch_type == "lora": #lora/locon
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype) mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype) mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
dora_scale = v[4] dora_scale = v[4]
reshape = v[5]
if reshape is not None:
weight = pad_tensor_to_shape(weight, reshape)
if v[2] is not None: if v[2] is not None:
alpha = v[2] / mat2.shape[0] alpha = v[2] / mat2.shape[0]
else: else:

View File

@ -373,14 +373,18 @@ class ModelPatcher:
lowvram_counter = 0 lowvram_counter = 0
loading = [] loading = []
for n, m in self.model.named_modules(): for n, m in self.model.named_modules():
if hasattr(m, "comfy_cast_weights") or hasattr(m, "weight"): params = []
loading.append((comfy.model_management.module_size(m), n, m)) for name, param in m.named_parameters(recurse=False):
params.append(name)
if hasattr(m, "comfy_cast_weights") or len(params) > 0:
loading.append((comfy.model_management.module_size(m), n, m, params))
load_completely = [] load_completely = []
loading.sort(reverse=True) loading.sort(reverse=True)
for x in loading: for x in loading:
n = x[1] n = x[1]
m = x[2] m = x[2]
params = x[3]
module_mem = x[0] module_mem = x[0]
lowvram_weight = False lowvram_weight = False
@ -416,22 +420,21 @@ class ModelPatcher:
if m.comfy_cast_weights: if m.comfy_cast_weights:
wipe_lowvram_weight(m) wipe_lowvram_weight(m)
if hasattr(m, "weight"):
mem_counter += module_mem mem_counter += module_mem
load_completely.append((module_mem, n, m)) load_completely.append((module_mem, n, m, params))
load_completely.sort(reverse=True) load_completely.sort(reverse=True)
for x in load_completely: for x in load_completely:
n = x[1] n = x[1]
m = x[2] m = x[2]
weight_key = "{}.weight".format(n) params = x[3]
bias_key = "{}.bias".format(n)
if hasattr(m, "comfy_patched_weights"): if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True: if m.comfy_patched_weights == True:
continue continue
self.patch_weight_to_device(weight_key, device_to=device_to) for param in params:
self.patch_weight_to_device(bias_key, device_to=device_to) self.patch_weight_to_device("{}.{}".format(n, param), device_to=device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m)) logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True m.comfy_patched_weights = True