diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py index 643e7c67..a7b0c55f 100644 --- a/comfy/ldm/flux/layers.py +++ b/comfy/ldm/flux/layers.py @@ -2,7 +2,6 @@ import math from dataclasses import dataclass import torch -from einops import rearrange from torch import Tensor, nn from .math import attention, rope @@ -37,9 +36,7 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10 """ t = time_factor * t half = dim // 2 - freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( - t.device - ) + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) @@ -49,7 +46,6 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10 embedding = embedding.to(t) return embedding - class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): super().__init__() @@ -95,14 +91,6 @@ class SelfAttention(nn.Module): self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) - def forward(self, x: Tensor, pe: Tensor) -> Tensor: - qkv = self.qkv(x) - q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) - q, k = self.norm(q, k, v) - x = attention(q, k, v, pe=pe) - x = self.proj(x) - return x - @dataclass class ModulationOut: @@ -164,14 +152,14 @@ class DoubleStreamBlock(nn.Module): img_modulated = self.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = self.img_attn.qkv(img_modulated) - img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = self.txt_attn.qkv(txt_modulated) - txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) # run actual attention @@ -236,7 +224,7 @@ class SingleStreamBlock(nn.Module): x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) - q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k = self.norm(q, k, v) # compute attention