diff --git a/comfy/model_detection.py b/comfy/model_detection.py index b7c3be30..bddbe2a4 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -345,7 +345,13 @@ def unet_config_from_diffusers_unet(state_dict, dtype=None): 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} - supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B] + SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, + 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], + 'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, + 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1], + 'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]} + + supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS] for unet_config in supported_models: matches = True diff --git a/comfy/supported_models.py b/comfy/supported_models.py index 2ce9736b..5b2eb73f 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -70,8 +70,8 @@ class SD20(supported_models_base.BASE): def model_type(self, state_dict, prefix=""): if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction k = "{}output_blocks.11.1.transformer_blocks.0.norm1.bias".format(prefix) - out = state_dict[k] - if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. + out = state_dict.get(k, None) + if out is not None and torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. return model_base.ModelType.V_PREDICTION return model_base.ModelType.EPS