ControlNetApplySD3 node can now be used to use SD3 controlnets.

This commit is contained in:
comfyanonymous 2024-06-26 16:14:47 -04:00
parent f8f7568d03
commit 264caca20e
4 changed files with 41 additions and 11 deletions

View File

@ -1,7 +1,6 @@
import torch import torch
from typing import Dict, Optional from typing import Dict, Optional
import comfy.ldm.modules.diffusionmodules.mmdit import comfy.ldm.modules.diffusionmodules.mmdit
import comfy.latent_formats
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT): class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
def __init__( def __init__(
@ -30,8 +29,6 @@ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
operations=operations operations=operations
) )
self.latent_format = comfy.latent_formats.SD3()
def forward( def forward(
self, self,
x: torch.Tensor, x: torch.Tensor,
@ -42,10 +39,8 @@ class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
) -> torch.Tensor: ) -> torch.Tensor:
#weird sd3 controlnet specific stuff #weird sd3 controlnet specific stuff
hint = hint * self.latent_format.scale_factor # self.latent_format.process_in(hint)
y = torch.zeros_like(y) y = torch.zeros_like(y)
if self.context_processor is not None: if self.context_processor is not None:
context = self.context_processor(context) context = self.context_processor(context)

View File

@ -7,6 +7,7 @@ import comfy.model_management
import comfy.model_detection import comfy.model_detection
import comfy.model_patcher import comfy.model_patcher
import comfy.ops import comfy.ops
import comfy.latent_formats
import comfy.cldm.cldm import comfy.cldm.cldm
import comfy.t2i_adapter.adapter import comfy.t2i_adapter.adapter
@ -38,6 +39,8 @@ class ControlBase:
self.cond_hint = None self.cond_hint = None
self.strength = 1.0 self.strength = 1.0
self.timestep_percent_range = (0.0, 1.0) self.timestep_percent_range = (0.0, 1.0)
self.latent_format = None
self.vae = None
self.global_average_pooling = False self.global_average_pooling = False
self.timestep_range = None self.timestep_range = None
self.compression_ratio = 8 self.compression_ratio = 8
@ -48,10 +51,12 @@ class ControlBase:
self.device = device self.device = device
self.previous_controlnet = None self.previous_controlnet = None
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)): def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None):
self.cond_hint_original = cond_hint self.cond_hint_original = cond_hint
self.strength = strength self.strength = strength
self.timestep_percent_range = timestep_percent_range self.timestep_percent_range = timestep_percent_range
if self.latent_format is not None:
self.vae = vae
return self return self
def pre_run(self, model, percent_to_timestep_function): def pre_run(self, model, percent_to_timestep_function):
@ -84,6 +89,8 @@ class ControlBase:
c.global_average_pooling = self.global_average_pooling c.global_average_pooling = self.global_average_pooling
c.compression_ratio = self.compression_ratio c.compression_ratio = self.compression_ratio
c.upscale_algorithm = self.upscale_algorithm c.upscale_algorithm = self.upscale_algorithm
c.latent_format = self.latent_format
c.vae = self.vae
def inference_memory_requirements(self, dtype): def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None: if self.previous_controlnet is not None:
@ -129,7 +136,7 @@ class ControlBase:
return out return out
class ControlNet(ControlBase): class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, device=None, load_device=None, manual_cast_dtype=None): def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None):
super().__init__(device) super().__init__(device)
self.control_model = control_model self.control_model = control_model
self.load_device = load_device self.load_device = load_device
@ -140,6 +147,7 @@ class ControlNet(ControlBase):
self.global_average_pooling = global_average_pooling self.global_average_pooling = global_average_pooling
self.model_sampling_current = None self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype self.manual_cast_dtype = manual_cast_dtype
self.latent_format = latent_format
def get_control(self, x_noisy, t, cond, batched_number): def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None control_prev = None
@ -162,7 +170,17 @@ class ControlNet(ControlBase):
if self.cond_hint is not None: if self.cond_hint is not None:
del self.cond_hint del self.cond_hint
self.cond_hint = None self.cond_hint = None
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio, self.upscale_algorithm, "center").to(dtype).to(self.device) compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.downscale_ratio
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
comfy.model_management.load_models_gpu(loaded_models)
if self.latent_format is not None:
self.cond_hint = self.latent_format.process_in(self.cond_hint)
self.cond_hint = self.cond_hint.to(device=self.device, dtype=dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]: if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number) self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
@ -341,7 +359,9 @@ def load_controlnet_mmdit(sd):
if len(unexpected) > 0: if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected)) logging.debug("unexpected controlnet keys: {}".format(unexpected))
control = ControlNet(control_model, compression_ratio=1, load_device=load_device, manual_cast_dtype=manual_cast_dtype) latent_format = comfy.latent_formats.SD3()
latent_format.shift_factor = 0 #SD3 controlnet weirdness
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control return control

View File

@ -80,8 +80,23 @@ class CLIPTextEncodeSD3:
return ([[cond, {"pooled_output": pooled}]], ) return ([[cond, {"pooled_output": pooled}]], )
class ControlNetApplySD3(nodes.ControlNetApplyAdvanced):
@classmethod
def INPUT_TYPES(s):
return {"required": {"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"control_net": ("CONTROL_NET", ),
"vae": ("VAE", ),
"image": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
}}
CATEGORY = "_for_testing/sd3"
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"TripleCLIPLoader": TripleCLIPLoader, "TripleCLIPLoader": TripleCLIPLoader,
"EmptySD3LatentImage": EmptySD3LatentImage, "EmptySD3LatentImage": EmptySD3LatentImage,
"CLIPTextEncodeSD3": CLIPTextEncodeSD3, "CLIPTextEncodeSD3": CLIPTextEncodeSD3,
"ControlNetApplySD3": ControlNetApplySD3,
} }

View File

@ -783,7 +783,7 @@ class ControlNetApplyAdvanced:
CATEGORY = "conditioning" CATEGORY = "conditioning"
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent): def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None):
if strength == 0: if strength == 0:
return (positive, negative) return (positive, negative)
@ -800,7 +800,7 @@ class ControlNetApplyAdvanced:
if prev_cnet in cnets: if prev_cnet in cnets:
c_net = cnets[prev_cnet] c_net = cnets[prev_cnet]
else: else:
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent)) c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae)
c_net.set_previous_controlnet(prev_cnet) c_net.set_previous_controlnet(prev_cnet)
cnets[prev_cnet] = c_net cnets[prev_cnet] = c_net