Fix a few issues with the custom_nodes PR.
There only needs to be one example in the folder.
This commit is contained in:
parent
fa66ece26b
commit
1688f5024d
|
@ -1,87 +0,0 @@
|
||||||
from utils import waste_cpu_resource
|
|
||||||
class ExampleFolder:
|
|
||||||
"""
|
|
||||||
A example node
|
|
||||||
|
|
||||||
Class methods
|
|
||||||
-------------
|
|
||||||
INPUT_TYPES (dict):
|
|
||||||
Tell the main program input parameters of nodes.
|
|
||||||
|
|
||||||
Attributes
|
|
||||||
----------
|
|
||||||
RETURN_TYPES (`tuple`):
|
|
||||||
The type of each element in the output tulple.
|
|
||||||
FUNCTION (`str`):
|
|
||||||
The name of the entry-point method which will return a tuple. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
|
||||||
OUTPUT_NODE ([`bool`]):
|
|
||||||
WIP
|
|
||||||
CATEGORY (`str`):
|
|
||||||
WIP
|
|
||||||
execute(s) -> tuple || None:
|
|
||||||
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
|
|
||||||
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
|
|
||||||
"""
|
|
||||||
def __init__(self):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def INPUT_TYPES(s):
|
|
||||||
"""
|
|
||||||
Return a dictionary which contains config for all input fields.
|
|
||||||
The type can be a string indicate a type or a list indicate selection.
|
|
||||||
Prebuilt types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
|
|
||||||
Input in type "INT", "STRING" or "FLOAT" will be converted automatically from a string to the corresponse Python type before passing and have special config
|
|
||||||
Argument: s (`None`): Useless ig
|
|
||||||
Returns: `dict`:
|
|
||||||
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
|
|
||||||
- Value input_fields (`dict`): Contains input fields config:
|
|
||||||
* Key field_name (`string`): Name of a entry-point method's argument
|
|
||||||
* Value field_config (`tuple`):
|
|
||||||
+ First value is a string indicate the type of field or a list for selection.
|
|
||||||
+ Secound value is a config for type "INT", "STRING" or "FLOAT".
|
|
||||||
"""
|
|
||||||
return {
|
|
||||||
"required": {
|
|
||||||
"string_field": ("STRING", {
|
|
||||||
"multiline": True, #Allow the input to be multilined
|
|
||||||
"default": "Hello World!"
|
|
||||||
}),
|
|
||||||
"int_field": ("INT", {
|
|
||||||
"default": 0,
|
|
||||||
"min": 0, #Minimum value
|
|
||||||
"max": 4096, #Maximum value
|
|
||||||
"step": 64 #Slider's step
|
|
||||||
}),
|
|
||||||
#Like INT
|
|
||||||
"print_to_screen": (["Enable", "Disable"], {"default": "Enable"})
|
|
||||||
},
|
|
||||||
#"hidden": {
|
|
||||||
# "prompt": "PROMPT",
|
|
||||||
# "extra_pnginfo": "EXTRA_PNGINFO"
|
|
||||||
#},
|
|
||||||
}
|
|
||||||
|
|
||||||
RETURN_TYPES = ("STRING", "INT", "FLOAT", "STRING")
|
|
||||||
FUNCTION = "test"
|
|
||||||
|
|
||||||
#OUTPUT_NODE = True
|
|
||||||
|
|
||||||
CATEGORY = "Example"
|
|
||||||
|
|
||||||
def test(self, string_field, int_field, print_to_screen):
|
|
||||||
rand_float = waste_cpu_resource()
|
|
||||||
if print_to_screen == "Enable":
|
|
||||||
print(f"""Your input contains:
|
|
||||||
string_field aka input text: {string_field}
|
|
||||||
int_field: {int_field}
|
|
||||||
A random float number: {rand_float}
|
|
||||||
""")
|
|
||||||
return (string_field, int_field, rand_float, print_to_screen)
|
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
|
||||||
"ExampleFolder": ExampleFolder
|
|
||||||
}
|
|
||||||
"""
|
|
||||||
NODE_CLASS_MAPPINGS (dict): A dictionary contains all nodes you want to export
|
|
||||||
"""
|
|
|
@ -1,4 +0,0 @@
|
||||||
import torch
|
|
||||||
def waste_cpu_resource():
|
|
||||||
x = torch.rand(1, 1e6, dtype=torch.float64).cpu()
|
|
||||||
return x.numpy()[0, 1]
|
|
|
@ -12,11 +12,13 @@ class Example:
|
||||||
RETURN_TYPES (`tuple`):
|
RETURN_TYPES (`tuple`):
|
||||||
The type of each element in the output tulple.
|
The type of each element in the output tulple.
|
||||||
FUNCTION (`str`):
|
FUNCTION (`str`):
|
||||||
The name of the entry-point method which will return a tuple. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
The name of the entry-point method. For example, if `FUNCTION = "execute"` then it will run Example().execute()
|
||||||
OUTPUT_NODE ([`bool`]):
|
OUTPUT_NODE ([`bool`]):
|
||||||
WIP
|
If this node is an output node that outputs a result/image from the graph. The SaveImage node is an example.
|
||||||
|
The backend iterates on these output nodes and tries to execute all their parents if their parent graph is properly connected.
|
||||||
|
Assumed to be False if not present.
|
||||||
CATEGORY (`str`):
|
CATEGORY (`str`):
|
||||||
WIP
|
The category the node should appear in the UI.
|
||||||
execute(s) -> tuple || None:
|
execute(s) -> tuple || None:
|
||||||
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
|
The entry point method. The name of this method must be the same as the value of property `FUNCTION`.
|
||||||
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
|
For example, if `FUNCTION = "execute"` then this method's name must be `execute`, if `FUNCTION = "foo"` then it must be `foo`.
|
||||||
|
@ -28,10 +30,10 @@ class Example:
|
||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
"""
|
"""
|
||||||
Return a dictionary which contains config for all input fields.
|
Return a dictionary which contains config for all input fields.
|
||||||
The type can be a string indicate a type or a list indicate selection.
|
Some types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
|
||||||
Prebuilt types (string): "MODEL", "VAE", "CLIP", "CONDITIONING", "LATENT", "IMAGE", "INT", "STRING", "FLOAT".
|
Input types "INT", "STRING" or "FLOAT" are special values for fields on the node.
|
||||||
Input in type "INT", "STRING" or "FLOAT" will be converted automatically from a string to the corresponse Python type before passing and have special config
|
The type can be a list for selection.
|
||||||
Argument: s (`None`): Useless ig
|
|
||||||
Returns: `dict`:
|
Returns: `dict`:
|
||||||
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
|
- Key input_fields_group (`string`): Can be either required, hidden or optional. A node class must have property `required`
|
||||||
- Value input_fields (`dict`): Contains input fields config:
|
- Value input_fields (`dict`): Contains input fields config:
|
||||||
|
@ -42,46 +44,43 @@ class Example:
|
||||||
"""
|
"""
|
||||||
return {
|
return {
|
||||||
"required": {
|
"required": {
|
||||||
"string_field": ("STRING", {
|
"image": ("IMAGE",),
|
||||||
"multiline": True, #Allow the input to be multilined
|
|
||||||
"default": "Hello World!"
|
|
||||||
}),
|
|
||||||
"int_field": ("INT", {
|
"int_field": ("INT", {
|
||||||
"default": 0,
|
"default": 0,
|
||||||
"min": 0, #Minimum value
|
"min": 0, #Minimum value
|
||||||
"max": 4096, #Maximum value
|
"max": 4096, #Maximum value
|
||||||
"step": 64 #Slider's step
|
"step": 64 #Slider's step
|
||||||
}),
|
}),
|
||||||
#Like INT
|
|
||||||
"float_field": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
"float_field": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||||||
"print_to_screen": (["Enable", "Disable"], {"default": "Enable"})
|
"print_to_screen": (["enable", "disable"],),
|
||||||
|
"string_field": ("STRING", {
|
||||||
|
"multiline": False, #True if you want the field to look like the one on the ClipTextEncode node
|
||||||
|
"default": "Hello World!"
|
||||||
|
}),
|
||||||
},
|
},
|
||||||
#"hidden": {
|
|
||||||
# "prompt": "PROMPT",
|
|
||||||
# "extra_pnginfo": "EXTRA_PNGINFO"
|
|
||||||
#},
|
|
||||||
}
|
}
|
||||||
|
|
||||||
RETURN_TYPES = ("STRING", "INT", "FLOAT", "STRING")
|
RETURN_TYPES = ("IMAGE",)
|
||||||
FUNCTION = "test"
|
FUNCTION = "test"
|
||||||
|
|
||||||
#OUTPUT_NODE = True
|
#OUTPUT_NODE = False
|
||||||
|
|
||||||
CATEGORY = "Example"
|
CATEGORY = "Example"
|
||||||
|
|
||||||
def test(self, string_field, int_field, float_field, print_to_screen):
|
def test(self, image, string_field, int_field, float_field, print_to_screen):
|
||||||
if print_to_screen == "Enable":
|
if print_to_screen == "enable":
|
||||||
print(f"""Your input contains:
|
print(f"""Your input contains:
|
||||||
string_field aka input text: {string_field}
|
string_field aka input text: {string_field}
|
||||||
int_field: {int_field}
|
int_field: {int_field}
|
||||||
float_field: {float_field}
|
float_field: {float_field}
|
||||||
""")
|
""")
|
||||||
return (string_field, int_field, float_field, print_to_screen)
|
#do some processing on the image, in this example I just invert it
|
||||||
|
image = 1.0 - image
|
||||||
|
return (image,)
|
||||||
|
|
||||||
|
|
||||||
|
# A dictionary that contains all nodes you want to export with their names
|
||||||
|
# NOTE: names should be globally unique
|
||||||
NODE_CLASS_MAPPINGS = {
|
NODE_CLASS_MAPPINGS = {
|
||||||
"Example": Example
|
"Example": Example
|
||||||
}
|
}
|
||||||
"""
|
|
||||||
NODE_CLASS_MAPPINGS (dict): A dictionary contains all nodes you want to export
|
|
||||||
"""
|
|
22
nodes.py
22
nodes.py
|
@ -5,6 +5,7 @@ import sys
|
||||||
import json
|
import json
|
||||||
import hashlib
|
import hashlib
|
||||||
import copy
|
import copy
|
||||||
|
import traceback
|
||||||
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from PIL.PngImagePlugin import PngInfo
|
from PIL.PngImagePlugin import PngInfo
|
||||||
|
@ -751,29 +752,28 @@ NODE_CLASS_MAPPINGS = {
|
||||||
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
|
CUSTOM_NODE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), "custom_nodes")
|
||||||
def load_custom_nodes():
|
def load_custom_nodes():
|
||||||
possible_modules = os.listdir(CUSTOM_NODE_PATH)
|
possible_modules = os.listdir(CUSTOM_NODE_PATH)
|
||||||
try:
|
if "__pycache__" in possible_modules:
|
||||||
#Comment out these two lines if you want to test
|
|
||||||
possible_modules.remove("example.py")
|
|
||||||
possible_modules.remove("example_folder")
|
|
||||||
possible_modules.remove("__pycache__")
|
possible_modules.remove("__pycache__")
|
||||||
except ValueError: pass
|
|
||||||
for possible_module in possible_modules:
|
for possible_module in possible_modules:
|
||||||
module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
|
module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
|
||||||
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
||||||
|
|
||||||
|
module_name = "custom_node_module.{}".format(possible_module)
|
||||||
try:
|
try:
|
||||||
if os.path.isfile(module_path):
|
if os.path.isfile(module_path):
|
||||||
module_spec = importlib.util.spec_from_file_location(os.path.basename(module_path), module_path)
|
module_spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||||
else:
|
else:
|
||||||
module_spec = importlib.util.spec_from_file_location(module_path, "main.py")
|
module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
|
||||||
module = importlib.util.module_from_spec(module_spec)
|
module = importlib.util.module_from_spec(module_spec)
|
||||||
|
sys.modules[module_name] = module
|
||||||
module_spec.loader.exec_module(module)
|
module_spec.loader.exec_module(module)
|
||||||
if getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
||||||
NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
|
NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
|
||||||
else:
|
else:
|
||||||
print(f"Skip {possible_module} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
|
print(f"Skip {possible_module} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
|
||||||
except ImportError as e:
|
except Exception as e:
|
||||||
print(f"Cannot import {possible_module} module for custom nodes.")
|
print(traceback.format_exc())
|
||||||
print(e)
|
print(f"Cannot import {possible_module} module for custom nodes:", e)
|
||||||
|
|
||||||
load_custom_nodes()
|
load_custom_nodes()
|
Loading…
Reference in New Issue