diff --git a/comfy/latent_formats.py b/comfy/latent_formats.py index 4b4a9eda..34c7bb3d 100644 --- a/comfy/latent_formats.py +++ b/comfy/latent_formats.py @@ -139,3 +139,14 @@ class SD3(LatentFormat): class StableAudio1(LatentFormat): latent_channels = 64 + +class Flux(SD3): + def __init__(self): + self.scale_factor = 0.3611 + self.shift_factor = 0.1159 + + def process_in(self, latent): + return (latent - self.shift_factor) * self.scale_factor + + def process_out(self, latent): + return (latent / self.scale_factor) + self.shift_factor diff --git a/comfy/ldm/flux/layers.py b/comfy/ldm/flux/layers.py new file mode 100644 index 00000000..bb5e02b6 --- /dev/null +++ b/comfy/ldm/flux/layers.py @@ -0,0 +1,257 @@ +import math +from dataclasses import dataclass + +import torch +from einops import rearrange +from torch import Tensor, nn + +from .math import attention, rope +import comfy.ops + + +class EmbedND(nn.Module): + def __init__(self, dim: int, theta: int, axes_dim: list[int]): + super().__init__() + self.dim = dim + self.theta = theta + self.axes_dim = axes_dim + + def forward(self, ids: Tensor) -> Tensor: + n_axes = ids.shape[-1] + emb = torch.cat( + [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], + dim=-3, + ) + + return emb.unsqueeze(1) + + +def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): + """ + Create sinusoidal timestep embeddings. + :param t: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param dim: the dimension of the output. + :param max_period: controls the minimum frequency of the embeddings. + :return: an (N, D) Tensor of positional embeddings. + """ + t = time_factor * t + half = dim // 2 + freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( + t.device + ) + + args = t[:, None].float() * freqs[None] + embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) + if dim % 2: + embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) + if torch.is_floating_point(t): + embedding = embedding.to(t) + return embedding + + +class MLPEmbedder(nn.Module): + def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): + super().__init__() + self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device) + self.silu = nn.SiLU() + self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device) + + def forward(self, x: Tensor) -> Tensor: + return self.out_layer(self.silu(self.in_layer(x))) + + +class RMSNorm(torch.nn.Module): + def __init__(self, dim: int, dtype=None, device=None, operations=None): + super().__init__() + self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device)) + + def forward(self, x: Tensor): + x_dtype = x.dtype + x = x.float() + rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) + return (x * rrms).to(dtype=x_dtype) * comfy.ops.cast_to(self.scale, dtype=x_dtype, device=x.device) + + +class QKNorm(torch.nn.Module): + def __init__(self, dim: int, dtype=None, device=None, operations=None): + super().__init__() + self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) + self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) + + def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: + q = self.query_norm(q) + k = self.key_norm(k) + return q.to(v), k.to(v) + + +class SelfAttention(nn.Module): + def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + + self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) + self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) + self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) + + def forward(self, x: Tensor, pe: Tensor) -> Tensor: + qkv = self.qkv(x) + q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k = self.norm(q, k, v) + x = attention(q, k, v, pe=pe) + x = self.proj(x) + return x + + +@dataclass +class ModulationOut: + shift: Tensor + scale: Tensor + gate: Tensor + + +class Modulation(nn.Module): + def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): + super().__init__() + self.is_double = double + self.multiplier = 6 if double else 3 + self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) + + def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: + out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) + + return ( + ModulationOut(*out[:3]), + ModulationOut(*out[3:]) if self.is_double else None, + ) + + +class DoubleStreamBlock(nn.Module): + def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None): + super().__init__() + + mlp_hidden_dim = int(hidden_size * mlp_ratio) + self.num_heads = num_heads + self.hidden_size = hidden_size + self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + + self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.img_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) + + self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) + self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) + + self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.txt_mlp = nn.Sequential( + operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), + nn.GELU(approximate="tanh"), + operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), + ) + + def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: + img_mod1, img_mod2 = self.img_mod(vec) + txt_mod1, txt_mod2 = self.txt_mod(vec) + + # prepare image for attention + img_modulated = self.img_norm1(img) + img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift + img_qkv = self.img_attn.qkv(img_modulated) + img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) + + # prepare txt for attention + txt_modulated = self.txt_norm1(txt) + txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift + txt_qkv = self.txt_attn.qkv(txt_modulated) + txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) + + # run actual attention + q = torch.cat((txt_q, img_q), dim=2) + k = torch.cat((txt_k, img_k), dim=2) + v = torch.cat((txt_v, img_v), dim=2) + + attn = attention(q, k, v, pe=pe) + txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] + + # calculate the img bloks + img = img + img_mod1.gate * self.img_attn.proj(img_attn) + img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) + + # calculate the txt bloks + txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) + txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) + return img, txt + + +class SingleStreamBlock(nn.Module): + """ + A DiT block with parallel linear layers as described in + https://arxiv.org/abs/2302.05442 and adapted modulation interface. + """ + + def __init__( + self, + hidden_size: int, + num_heads: int, + mlp_ratio: float = 4.0, + qk_scale: float | None = None, + dtype=None, + device=None, + operations=None + ): + super().__init__() + self.hidden_dim = hidden_size + self.num_heads = num_heads + head_dim = hidden_size // num_heads + self.scale = qk_scale or head_dim**-0.5 + + self.mlp_hidden_dim = int(hidden_size * mlp_ratio) + # qkv and mlp_in + self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) + # proj and mlp_out + self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) + + self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) + + self.hidden_size = hidden_size + self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + + self.mlp_act = nn.GELU(approximate="tanh") + self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) + + def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: + mod, _ = self.modulation(vec) + x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift + qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) + + q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) + q, k = self.norm(q, k, v) + + # compute attention + attn = attention(q, k, v, pe=pe) + # compute activation in mlp stream, cat again and run second linear layer + output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) + return x + mod.gate * output + + +class LastLayer(nn.Module): + def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): + super().__init__() + self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) + self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) + self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) + + def forward(self, x: Tensor, vec: Tensor) -> Tensor: + shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) + x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] + x = self.linear(x) + return x diff --git a/comfy/ldm/flux/math.py b/comfy/ldm/flux/math.py new file mode 100644 index 00000000..e4ef624e --- /dev/null +++ b/comfy/ldm/flux/math.py @@ -0,0 +1,29 @@ +import torch +from einops import rearrange +from torch import Tensor +from comfy.ldm.modules.attention import optimized_attention + +def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: + q, k = apply_rope(q, k, pe) + + heads = q.shape[1] + x = optimized_attention(q, k, v, heads, skip_reshape=True) + return x + + +def rope(pos: Tensor, dim: int, theta: int) -> Tensor: + assert dim % 2 == 0 + scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim + omega = 1.0 / (theta**scale) + out = torch.einsum("...n,d->...nd", pos, omega) + out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1) + out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) + return out.float() + + +def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: + xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) + xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) + xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] + xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] + return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) diff --git a/comfy/ldm/flux/model.py b/comfy/ldm/flux/model.py new file mode 100644 index 00000000..f77834c1 --- /dev/null +++ b/comfy/ldm/flux/model.py @@ -0,0 +1,136 @@ +#Original code can be found on: https://github.com/black-forest-labs/flux + +from dataclasses import dataclass + +import torch +from torch import Tensor, nn + +from .layers import ( + DoubleStreamBlock, + EmbedND, + LastLayer, + MLPEmbedder, + SingleStreamBlock, + timestep_embedding, +) + +from einops import rearrange, repeat + +@dataclass +class FluxParams: + in_channels: int + vec_in_dim: int + context_in_dim: int + hidden_size: int + mlp_ratio: float + num_heads: int + depth: int + depth_single_blocks: int + axes_dim: list[int] + theta: int + qkv_bias: bool + guidance_embed: bool + + +class Flux(nn.Module): + """ + Transformer model for flow matching on sequences. + """ + + def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs): + super().__init__() + self.dtype = dtype + params = FluxParams(**kwargs) + self.params = params + self.in_channels = params.in_channels + self.out_channels = self.in_channels + if params.hidden_size % params.num_heads != 0: + raise ValueError( + f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" + ) + pe_dim = params.hidden_size // params.num_heads + if sum(params.axes_dim) != pe_dim: + raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") + self.hidden_size = params.hidden_size + self.num_heads = params.num_heads + self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) + self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) + self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) + self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) + self.guidance_in = ( + MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() + ) + self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) + + self.double_blocks = nn.ModuleList( + [ + DoubleStreamBlock( + self.hidden_size, + self.num_heads, + mlp_ratio=params.mlp_ratio, + qkv_bias=params.qkv_bias, + dtype=dtype, device=device, operations=operations + ) + for _ in range(params.depth) + ] + ) + + self.single_blocks = nn.ModuleList( + [ + SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) + for _ in range(params.depth_single_blocks) + ] + ) + + self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) + + def forward_orig( + self, + img: Tensor, + img_ids: Tensor, + txt: Tensor, + txt_ids: Tensor, + timesteps: Tensor, + y: Tensor, + guidance: Tensor | None = None, + ) -> Tensor: + if img.ndim != 3 or txt.ndim != 3: + raise ValueError("Input img and txt tensors must have 3 dimensions.") + + # running on sequences img + img = self.img_in(img) + vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) + if self.params.guidance_embed: + if guidance is None: + raise ValueError("Didn't get guidance strength for guidance distilled model.") + vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) + + vec = vec + self.vector_in(y) + txt = self.txt_in(txt) + + ids = torch.cat((txt_ids, img_ids), dim=1) + pe = self.pe_embedder(ids) + + for block in self.double_blocks: + img, txt = block(img=img, txt=txt, vec=vec, pe=pe) + + img = torch.cat((txt, img), 1) + for block in self.single_blocks: + img = block(img, vec=vec, pe=pe) + img = img[:, txt.shape[1] :, ...] + + img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) + return img + + def forward(self, x, timestep, context, y, guidance, **kwargs): + bs, c, h, w = x.shape + img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) + + img_ids = torch.zeros((h // 2, w // 2, 3), device=x.device, dtype=x.dtype) + img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2, device=x.device, dtype=x.dtype)[:, None] + img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2, device=x.device, dtype=x.dtype)[None, :] + img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) + + txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) + out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance) + return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h // 2, w=w // 2, ph=2, pw=2) diff --git a/comfy/model_base.py b/comfy/model_base.py index 9d60c1fb..7c7b4c3f 100644 --- a/comfy/model_base.py +++ b/comfy/model_base.py @@ -10,6 +10,8 @@ import comfy.ldm.aura.mmdit import comfy.ldm.hydit.models import comfy.ldm.audio.dit import comfy.ldm.audio.embedders +import comfy.ldm.flux.model + import comfy.model_management import comfy.conds import comfy.ops @@ -26,6 +28,7 @@ class ModelType(Enum): EDM = 5 FLOW = 6 V_PREDICTION_CONTINUOUS = 7 + FLUX = 8 from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV @@ -53,6 +56,9 @@ def model_sampling(model_config, model_type): elif model_type == ModelType.V_PREDICTION_CONTINUOUS: c = V_PREDICTION s = ModelSamplingContinuousV + elif model_type == ModelType.FLUX: + c = comfy.model_sampling.CONST + s = comfy.model_sampling.ModelSamplingFlux class ModelSampling(s, c): pass @@ -681,3 +687,18 @@ class HunyuanDiT(BaseModel): out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]])) return out + +class Flux(BaseModel): + def __init__(self, model_config, model_type=ModelType.FLUX, device=None): + super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux) + + def encode_adm(self, **kwargs): + return kwargs["pooled_output"] + + def extra_conds(self, **kwargs): + out = super().extra_conds(**kwargs) + cross_attn = kwargs.get("cross_attn", None) + if cross_attn is not None: + out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) + out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)])) + return out diff --git a/comfy/model_detection.py b/comfy/model_detection.py index ea495937..dda9797b 100644 --- a/comfy/model_detection.py +++ b/comfy/model_detection.py @@ -128,6 +128,23 @@ def detect_unet_config(state_dict, key_prefix): unet_config["image_model"] = "hydit1" return unet_config + if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux + dit_config = {} + dit_config["image_model"] = "flux" + dit_config["in_channels"] = 64 + dit_config["vec_in_dim"] = 768 + dit_config["context_in_dim"] = 4096 + dit_config["hidden_size"] = 3072 + dit_config["mlp_ratio"] = 4.0 + dit_config["num_heads"] = 24 + dit_config["depth"] = 19 + dit_config["depth_single_blocks"] = 38 + dit_config["axes_dim"] = [16, 56, 56] + dit_config["theta"] = 10000 + dit_config["qkv_bias"] = True + dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys + return dit_config + if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: return None diff --git a/comfy/model_sampling.py b/comfy/model_sampling.py index 25bb7e04..4a0f2db6 100644 --- a/comfy/model_sampling.py +++ b/comfy/model_sampling.py @@ -272,3 +272,43 @@ class StableCascadeSampling(ModelSamplingDiscrete): percent = 1.0 - percent return self.sigma(torch.tensor(percent)) + + +def flux_time_shift(mu: float, sigma: float, t): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + +class ModelSamplingFlux(torch.nn.Module): + def __init__(self, model_config=None): + super().__init__() + if model_config is not None: + sampling_settings = model_config.sampling_settings + else: + sampling_settings = {} + + self.set_parameters(shift=sampling_settings.get("shift", 1.15)) + + def set_parameters(self, shift=1.15, timesteps=10000): + self.shift = shift + ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps)) + self.register_buffer('sigmas', ts) + + @property + def sigma_min(self): + return self.sigmas[0] + + @property + def sigma_max(self): + return self.sigmas[-1] + + def timestep(self, sigma): + return sigma + + def sigma(self, timestep): + return flux_time_shift(self.shift, 1.0, timestep) + + def percent_to_sigma(self, percent): + if percent <= 0.0: + return 1.0 + if percent >= 1.0: + return 0.0 + return 1.0 - percent diff --git a/comfy/sd.py b/comfy/sd.py index 8bf8d108..c9bc1639 100644 --- a/comfy/sd.py +++ b/comfy/sd.py @@ -23,6 +23,7 @@ import comfy.text_encoders.sd3_clip import comfy.text_encoders.sa_t5 import comfy.text_encoders.aura_t5 import comfy.text_encoders.hydit +import comfy.text_encoders.flux import comfy.model_patcher import comfy.lora @@ -387,6 +388,7 @@ class CLIPType(Enum): SD3 = 3 STABLE_AUDIO = 4 HUNYUAN_DIT = 5 + FLUX = 6 def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION): clip_data = [] @@ -438,6 +440,9 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI elif clip_type == CLIPType.HUNYUAN_DIT: clip_target.clip = comfy.text_encoders.hydit.HyditModel clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer + elif clip_type == CLIPType.FLUX: + clip_target.clip = comfy.text_encoders.flux.FluxClipModel + clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer else: clip_target.clip = sdxl_clip.SDXLClipModel clip_target.tokenizer = sdxl_clip.SDXLTokenizer diff --git a/comfy/supported_models.py b/comfy/supported_models.py index ddd0c173..43e8f5d1 100644 --- a/comfy/supported_models.py +++ b/comfy/supported_models.py @@ -9,6 +9,7 @@ import comfy.text_encoders.sd3_clip import comfy.text_encoders.sa_t5 import comfy.text_encoders.aura_t5 import comfy.text_encoders.hydit +import comfy.text_encoders.flux from . import supported_models_base from . import latent_formats @@ -619,7 +620,45 @@ class HunyuanDiT1(HunyuanDiT): "linear_end" : 0.03, } +class Flux(supported_models_base.BASE): + unet_config = { + "image_model": "flux", + "guidance_embed": True, + } -models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1] + sampling_settings = { + } + + unet_extra_config = {} + latent_format = latent_formats.Flux + supported_inference_dtypes = [torch.bfloat16, torch.float32] + + vae_key_prefix = ["vae."] + text_encoder_key_prefix = ["text_encoders."] + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Flux(self, device=device) + return out + + def clip_target(self, state_dict={}): + return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.FluxClipModel) + +class FluxSchnell(Flux): + unet_config = { + "image_model": "flux", + "guidance_embed": False, + } + + sampling_settings = { + "multiplier": 1.0, + "shift": 1.0, + } + + def get_model(self, state_dict, prefix="", device=None): + out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device) + return out + + +models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, Flux, FluxSchnell] models += [SVD_img2vid] diff --git a/comfy/text_encoders/flux.py b/comfy/text_encoders/flux.py new file mode 100644 index 00000000..2759a38a --- /dev/null +++ b/comfy/text_encoders/flux.py @@ -0,0 +1,64 @@ +from comfy import sd1_clip +import comfy.text_encoders.t5 +from transformers import T5TokenizerFast +import torch +import os + +class T5XXLModel(sd1_clip.SDClipModel): + def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None): + textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json") + super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5) + +class T5XXLTokenizer(sd1_clip.SDTokenizer): + def __init__(self, embedding_directory=None, tokenizer_data={}): + tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") + super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) + + +class FluxTokenizer: + def __init__(self, embedding_directory=None, tokenizer_data={}): + self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory) + self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory) + + def tokenize_with_weights(self, text:str, return_word_ids=False): + out = {} + out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids) + out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids) + return out + + def untokenize(self, token_weight_pair): + return self.clip_g.untokenize(token_weight_pair) + + def state_dict(self): + return {} + + +class FluxClipModel(torch.nn.Module): + def __init__(self, device="cpu", dtype=None): + super().__init__() + self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False) + self.t5xxl = T5XXLModel(device=device, dtype=dtype) + self.dtypes = set([dtype]) + + def set_clip_options(self, options): + self.clip_l.set_clip_options(options) + self.t5xxl.set_clip_options(options) + + def reset_clip_options(self): + self.clip_l.reset_clip_options() + self.t5xxl.reset_clip_options() + + def encode_token_weights(self, token_weight_pairs): + token_weight_pairs_l = token_weight_pairs["l"] + token_weight_pars_t5 = token_weight_pairs["t5xxl"] + + t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5) + l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l) + return t5_out, l_pooled + + def load_sd(self, sd): + if "text_model.encoder.layers.1.mlp.fc1.weight" in sd: + return self.clip_l.load_sd(sd) + else: + return self.t5xxl.load_sd(sd) + diff --git a/folder_paths.py b/folder_paths.py index 2baf8ce1..71faa2df 100644 --- a/folder_paths.py +++ b/folder_paths.py @@ -3,7 +3,7 @@ import time import logging from typing import Set, List, Dict, Tuple -supported_pt_extensions: Set[str] = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl']) +supported_pt_extensions: Set[str] = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl', '.sft']) SupportedFileExtensionsType = Set[str] ScanPathType = List[str] diff --git a/nodes.py b/nodes.py index dc66dd3e..93d24ae5 100644 --- a/nodes.py +++ b/nodes.py @@ -859,7 +859,7 @@ class DualCLIPLoader: def INPUT_TYPES(s): return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ), - "type": (["sdxl", "sd3"], ), + "type": (["sdxl", "sd3", "flux"], ), }} RETURN_TYPES = ("CLIP",) FUNCTION = "load_clip" @@ -873,6 +873,8 @@ class DualCLIPLoader: clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION elif type == "sd3": clip_type = comfy.sd.CLIPType.SD3 + elif type == "flux": + clip_type = comfy.sd.CLIPType.FLUX clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) return (clip,)