Add a denoise value to AlignYourStepsScheduler.
This commit is contained in:
parent
8cab3be673
commit
10fcd09f4a
|
@ -25,6 +25,7 @@ class AlignYourStepsScheduler:
|
||||||
return {"required":
|
return {"required":
|
||||||
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
{"model_type": (["SD1", "SDXL", "SVD"], ),
|
||||||
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
|
"steps": ("INT", {"default": 10, "min": 10, "max": 10000}),
|
||||||
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
RETURN_TYPES = ("SIGMAS",)
|
RETURN_TYPES = ("SIGMAS",)
|
||||||
|
@ -32,11 +33,18 @@ class AlignYourStepsScheduler:
|
||||||
|
|
||||||
FUNCTION = "get_sigmas"
|
FUNCTION = "get_sigmas"
|
||||||
|
|
||||||
def get_sigmas(self, model_type, steps):
|
def get_sigmas(self, model_type, steps, denoise):
|
||||||
|
total_steps = steps
|
||||||
|
if denoise < 1.0:
|
||||||
|
if denoise <= 0.0:
|
||||||
|
return (torch.FloatTensor([]),)
|
||||||
|
total_steps = round(steps * denoise)
|
||||||
|
|
||||||
sigmas = NOISE_LEVELS[model_type][:]
|
sigmas = NOISE_LEVELS[model_type][:]
|
||||||
if (steps + 1) != len(sigmas):
|
if (steps + 1) != len(sigmas):
|
||||||
sigmas = loglinear_interp(sigmas, steps + 1)
|
sigmas = loglinear_interp(sigmas, steps + 1)
|
||||||
|
|
||||||
|
sigmas = sigmas[-(total_steps + 1):]
|
||||||
sigmas[-1] = 0
|
sigmas[-1] = 0
|
||||||
return (torch.FloatTensor(sigmas), )
|
return (torch.FloatTensor(sigmas), )
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue