Fix missing arguments in cfg_function.

This commit is contained in:
comfyanonymous 2024-04-04 23:38:57 -04:00
parent 1f4fc9ea0c
commit 0f5768e038
2 changed files with 7 additions and 4 deletions

View File

@ -231,7 +231,7 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
logging.warning("WARNING: The comfy.samplers.calc_cond_uncond_batch function is deprecated please use the calc_cond_batch one instead.")
return tuple(calc_cond_batch(model, [cond, uncond], x_in, timestep, model_options))
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}):
def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_options={}, cond=None, uncond=None):
if "sampler_cfg_function" in model_options:
args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep,
"cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options}
@ -256,7 +256,7 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option
conds = [cond, uncond_]
out = calc_cond_batch(model, conds, x, timestep, model_options)
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options)
return cfg_function(model, out[0], out[1], cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
class KSamplerX0Inpaint:

View File

@ -436,8 +436,11 @@ class Guider_DualCFG(comfy.samplers.CFGGuider):
self.inner_set_conds({"positive": positive, "middle": middle, "negative": negative})
def predict_noise(self, x, timestep, model_options={}, seed=None):
out = comfy.samplers.calc_cond_batch(self.inner_model, [self.conds.get("negative", None), self.conds.get("middle", None), self.conds.get("positive", None)], x, timestep, model_options)
return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options) + (out[2] - out[1]) * self.cfg1
negative_cond = self.conds.get("negative", None)
middle_cond = self.conds.get("middle", None)
out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, self.conds.get("positive", None)], x, timestep, model_options)
return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options, cond=middle_cond, uncond=negative_cond) + (out[2] - out[1]) * self.cfg1
class DualCFGGuider:
@classmethod