ComfyUI/comfy/model_management.py

579 lines
17 KiB
Python
Raw Normal View History

import psutil
from enum import Enum
2023-05-05 04:19:35 +00:00
from comfy.cli_args import args
import torch
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
NO_VRAM = 1 #Very low vram: enable all the options to save vram
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both.
class CPUState(Enum):
GPU = 0
CPU = 1
MPS = 2
# Determine VRAM State
vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
cpu_state = CPUState.GPU
total_vram = 0
lowvram_available = True
2023-04-07 01:11:30 +00:00
xpu_available = False
directml_enabled = False
if args.directml is not None:
import torch_directml
directml_enabled = True
device_index = args.directml
if device_index < 0:
directml_device = torch_directml.device()
else:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
xpu_available = True
except:
pass
try:
if torch.backends.mps.is_available():
cpu_state = CPUState.MPS
except:
pass
if args.cpu:
cpu_state = CPUState.CPU
def get_torch_device():
global xpu_available
global directml_enabled
global cpu_state
if directml_enabled:
global directml_device
return directml_device
if cpu_state == CPUState.MPS:
return torch.device("mps")
if cpu_state == CPUState.CPU:
return torch.device("cpu")
else:
if xpu_available:
return torch.device("xpu")
else:
return torch.device(torch.cuda.current_device())
def get_total_memory(dev=None, torch_total_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_total = psutil.virtual_memory().total
mem_total_torch = mem_total
else:
if directml_enabled:
mem_total = 1024 * 1024 * 1024 #TODO
mem_total_torch = mem_total
elif xpu_available:
mem_total = torch.xpu.get_device_properties(dev).total_memory
mem_total_torch = mem_total
else:
stats = torch.cuda.memory_stats(dev)
mem_reserved = stats['reserved_bytes.all.current']
_, mem_total_cuda = torch.cuda.mem_get_info(dev)
mem_total_torch = mem_reserved
mem_total = mem_total_cuda
if torch_total_too:
return (mem_total, mem_total_torch)
else:
return mem_total
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
if not args.normalvram and not args.cpu:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram")
vram_state = VRAMState.HIGH_VRAM
try:
OOM_EXCEPTION = torch.cuda.OutOfMemoryError
except:
OOM_EXCEPTION = Exception
XFORMERS_VERSION = ""
XFORMERS_ENABLED_VAE = True
if args.disable_xformers:
XFORMERS_IS_AVAILABLE = False
else:
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILABLE = True
try:
XFORMERS_VERSION = xformers.version.__version__
print("xformers version:", XFORMERS_VERSION)
if XFORMERS_VERSION.startswith("0.0.18"):
print()
print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.")
print("Please downgrade or upgrade xformers to a different version.")
print()
XFORMERS_ENABLED_VAE = False
except:
pass
except:
XFORMERS_IS_AVAILABLE = False
def is_nvidia():
global cpu_state
if cpu_state == CPUState.GPU:
if torch.version.cuda:
return True
ENABLE_PYTORCH_ATTENTION = args.use_pytorch_cross_attention
if ENABLE_PYTORCH_ATTENTION == False and XFORMERS_IS_AVAILABLE == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
try:
if is_nvidia():
torch_version = torch.version.__version__
if int(torch_version[0]) >= 2:
ENABLE_PYTORCH_ATTENTION = True
except:
pass
if ENABLE_PYTORCH_ATTENTION:
2023-03-13 16:25:19 +00:00
torch.backends.cuda.enable_math_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(True)
XFORMERS_IS_AVAILABLE = False
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.novram:
set_vram_to = VRAMState.NO_VRAM
elif args.highvram or args.gpu_only:
vram_state = VRAMState.HIGH_VRAM
FORCE_FP32 = False
FORCE_FP16 = False
if args.force_fp32:
print("Forcing FP32, if this improves things please report it.")
FORCE_FP32 = True
if args.force_fp16:
print("Forcing FP16.")
FORCE_FP16 = True
if lowvram_available:
try:
import accelerate
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
except Exception as e:
import traceback
print(traceback.format_exc())
print("ERROR: LOW VRAM MODE NEEDS accelerate.")
lowvram_available = False
if cpu_state != CPUState.GPU:
vram_state = VRAMState.DISABLED
if cpu_state == CPUState.MPS:
vram_state = VRAMState.SHARED
print(f"Set vram state to: {vram_state.name}")
def get_torch_device_name(device):
if hasattr(device, 'type'):
if device.type == "cuda":
2023-07-17 19:18:58 +00:00
try:
allocator_backend = torch.cuda.get_allocator_backend()
except:
allocator_backend = ""
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend)
else:
return "{}".format(device.type)
else:
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
try:
print("Device:", get_torch_device_name(get_torch_device()))
except:
print("Could not pick default device.")
current_loaded_model = None
2023-02-16 15:38:08 +00:00
current_gpu_controlnets = []
model_accelerated = False
def unload_model():
global current_loaded_model
global model_accelerated
2023-02-16 15:38:08 +00:00
global current_gpu_controlnets
global vram_state
if current_loaded_model is not None:
if model_accelerated:
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
model_accelerated = False
current_loaded_model.unpatch_model()
current_loaded_model.model.to(current_loaded_model.offload_device)
current_loaded_model.model_patches_to(current_loaded_model.offload_device)
current_loaded_model = None
if vram_state != VRAMState.HIGH_VRAM:
soft_empty_cache()
if vram_state != VRAMState.HIGH_VRAM:
if len(current_gpu_controlnets) > 0:
for n in current_gpu_controlnets:
n.cpu()
current_gpu_controlnets = []
def minimum_inference_memory():
return (768 * 1024 * 1024)
def load_model_gpu(model):
global current_loaded_model
global vram_state
global model_accelerated
if model is current_loaded_model:
return
unload_model()
torch_dev = model.load_device
model.model_patches_to(torch_dev)
model.model_patches_to(model.model_dtype())
2023-07-15 17:24:05 +00:00
current_loaded_model = model
if is_device_cpu(torch_dev):
vram_set_state = VRAMState.DISABLED
else:
vram_set_state = vram_state
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = model.model_size()
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 ))
if model_size > (current_free_mem - minimum_inference_memory()): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
2023-07-15 17:24:05 +00:00
real_model = model.model
if vram_set_state == VRAMState.DISABLED:
2023-03-24 12:04:50 +00:00
pass
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
model_accelerated = False
real_model.to(torch_dev)
2023-07-15 17:24:05 +00:00
try:
real_model = model.patch_model()
except Exception as e:
model.unpatch_model()
unload_model()
raise e
if vram_set_state == VRAMState.NO_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
model_accelerated = True
elif vram_set_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
model_accelerated = True
return current_loaded_model
2023-04-19 13:36:19 +00:00
def load_controlnet_gpu(control_models):
2023-02-16 15:38:08 +00:00
global current_gpu_controlnets
2023-02-17 20:45:29 +00:00
global vram_state
if vram_state == VRAMState.DISABLED:
return
2023-02-17 20:45:29 +00:00
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
for m in control_models:
if hasattr(m, 'set_lowvram'):
m.set_lowvram(True)
2023-02-17 20:45:29 +00:00
#don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after
return
2023-04-19 13:36:19 +00:00
models = []
for m in control_models:
models += m.get_models()
2023-02-16 15:38:08 +00:00
for m in current_gpu_controlnets:
if m not in models:
m.cpu()
device = get_torch_device()
2023-02-16 15:38:08 +00:00
current_gpu_controlnets = []
for m in models:
current_gpu_controlnets.append(m.to(device))
2023-02-16 15:38:08 +00:00
2023-02-17 20:45:29 +00:00
def load_if_low_vram(model):
global vram_state
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
2023-04-07 03:52:34 +00:00
return model.to(get_torch_device())
2023-02-17 20:45:29 +00:00
return model
def unload_if_low_vram(model):
global vram_state
if vram_state == VRAMState.LOW_VRAM or vram_state == VRAMState.NO_VRAM:
2023-02-17 20:45:29 +00:00
return model.cpu()
return model
def unet_offload_device():
2023-07-03 04:08:30 +00:00
if vram_state == VRAMState.HIGH_VRAM:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_offload_device():
2023-07-03 04:08:30 +00:00
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def text_encoder_device():
2023-07-03 04:08:30 +00:00
if args.gpu_only:
return get_torch_device()
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
return get_torch_device()
else:
return torch.device("cpu")
else:
return torch.device("cpu")
def vae_device():
return get_torch_device()
def vae_offload_device():
2023-07-03 04:08:30 +00:00
if args.gpu_only:
return get_torch_device()
else:
return torch.device("cpu")
def vae_dtype():
if args.fp16_vae:
return torch.float16
elif args.bf16_vae:
return torch.bfloat16
else:
return torch.float32
def get_autocast_device(dev):
if hasattr(dev, 'type'):
return dev.type
return "cuda"
2023-02-17 20:45:29 +00:00
def xformers_enabled():
global xpu_available
global directml_enabled
global cpu_state
if cpu_state != CPUState.GPU:
return False
if xpu_available:
return False
if directml_enabled:
return False
return XFORMERS_IS_AVAILABLE
def xformers_enabled_vae():
enabled = xformers_enabled()
if not enabled:
return False
return XFORMERS_ENABLED_VAE
2023-03-13 16:25:19 +00:00
def pytorch_attention_enabled():
global ENABLE_PYTORCH_ATTENTION
2023-03-13 16:25:19 +00:00
return ENABLE_PYTORCH_ATTENTION
def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
return True
return False
def get_free_memory(dev=None, torch_free_too=False):
global xpu_available
global directml_enabled
if dev is None:
dev = get_torch_device()
2023-03-24 12:04:50 +00:00
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
mem_free_total = psutil.virtual_memory().available
mem_free_torch = mem_free_total
else:
if directml_enabled:
mem_free_total = 1024 * 1024 * 1024 #TODO
mem_free_torch = mem_free_total
elif xpu_available:
mem_free_total = torch.xpu.get_device_properties(dev).total_memory - torch.xpu.memory_allocated(dev)
mem_free_torch = mem_free_total
else:
stats = torch.cuda.memory_stats(dev)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
if torch_free_too:
return (mem_free_total, mem_free_torch)
else:
return mem_free_total
def maximum_batch_area():
global vram_state
if vram_state == VRAMState.NO_VRAM:
return 0
memory_free = get_free_memory() / (1024 * 1024)
if xformers_enabled() or pytorch_attention_flash_attention():
#TODO: this needs to be tweaked
area = 20 * memory_free
else:
#TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future
area = ((memory_free - 1024) * 0.9) / (0.6)
return int(max(area, 0))
def cpu_mode():
global cpu_state
return cpu_state == CPUState.CPU
2023-03-24 12:04:50 +00:00
def mps_mode():
global cpu_state
return cpu_state == CPUState.MPS
2023-03-24 12:04:50 +00:00
def is_device_cpu(device):
if hasattr(device, 'type'):
2023-07-04 06:09:02 +00:00
if (device.type == 'cpu'):
return True
return False
def is_device_mps(device):
if hasattr(device, 'type'):
if (device.type == 'mps'):
return True
return False
def should_use_fp16(device=None, model_params=0):
global xpu_available
global directml_enabled
if FORCE_FP16:
return True
if device is not None: #TODO
2023-07-04 06:09:02 +00:00
if is_device_cpu(device) or is_device_mps(device):
return False
if FORCE_FP32:
return False
if directml_enabled:
return False
if cpu_mode() or mps_mode() or xpu_available:
return False #TODO ?
if torch.cuda.is_bf16_supported():
return True
2023-03-03 18:18:01 +00:00
props = torch.cuda.get_device_properties("cuda")
if props.major < 6:
return False
fp16_works = False
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
#when the model doesn't actually fit on the card
#TODO: actually test if GP106 and others have the same type of behavior
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
for x in nvidia_10_series:
if x in props.name.lower():
fp16_works = True
if fp16_works:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory())
if model_params * 4 > free_model_memory:
return True
if props.major < 7:
return False
#FP16 is just broken on these cards
2023-03-21 20:57:35 +00:00
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"]
for x in nvidia_16_series:
if x in props.name:
return False
return True
def soft_empty_cache():
global xpu_available
global cpu_state
if cpu_state == CPUState.MPS:
2023-06-01 07:52:51 +00:00
torch.mps.empty_cache()
elif xpu_available:
torch.xpu.empty_cache()
elif torch.cuda.is_available():
if is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass
interrupt_processing_mutex = threading.RLock()
interrupt_processing = False
def interrupt_current_processing(value=True):
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
interrupt_processing = value
def processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
return interrupt_processing
def throw_exception_if_processing_interrupted():
global interrupt_processing
global interrupt_processing_mutex
with interrupt_processing_mutex:
if interrupt_processing:
interrupt_processing = False
raise InterruptProcessingException()