247 lines
8.9 KiB
Python
247 lines
8.9 KiB
Python
|
import math
|
||
|
|
||
|
from einops import rearrange, repeat
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from . import utils
|
||
|
|
||
|
# Karras et al. preconditioned denoiser
|
||
|
|
||
|
class Denoiser(nn.Module):
|
||
|
"""A Karras et al. preconditioner for denoising diffusion models."""
|
||
|
|
||
|
def __init__(self, inner_model, sigma_data=1.):
|
||
|
super().__init__()
|
||
|
self.inner_model = inner_model
|
||
|
self.sigma_data = sigma_data
|
||
|
|
||
|
def get_scalings(self, sigma):
|
||
|
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
|
||
|
c_out = sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||
|
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
|
||
|
return c_skip, c_out, c_in
|
||
|
|
||
|
def loss(self, input, noise, sigma, **kwargs):
|
||
|
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||
|
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
||
|
model_output = self.inner_model(noised_input * c_in, sigma, **kwargs)
|
||
|
target = (input - c_skip * noised_input) / c_out
|
||
|
return (model_output - target).pow(2).flatten(1).mean(1)
|
||
|
|
||
|
def forward(self, input, sigma, **kwargs):
|
||
|
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||
|
return self.inner_model(input * c_in, sigma, **kwargs) * c_out + input * c_skip
|
||
|
|
||
|
|
||
|
class DenoiserWithVariance(Denoiser):
|
||
|
def loss(self, input, noise, sigma, **kwargs):
|
||
|
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
|
||
|
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
|
||
|
model_output, logvar = self.inner_model(noised_input * c_in, sigma, return_variance=True, **kwargs)
|
||
|
logvar = utils.append_dims(logvar, model_output.ndim)
|
||
|
target = (input - c_skip * noised_input) / c_out
|
||
|
losses = ((model_output - target) ** 2 / logvar.exp() + logvar) / 2
|
||
|
return losses.flatten(1).mean(1)
|
||
|
|
||
|
|
||
|
# Residual blocks
|
||
|
|
||
|
class ResidualBlock(nn.Module):
|
||
|
def __init__(self, *main, skip=None):
|
||
|
super().__init__()
|
||
|
self.main = nn.Sequential(*main)
|
||
|
self.skip = skip if skip else nn.Identity()
|
||
|
|
||
|
def forward(self, input):
|
||
|
return self.main(input) + self.skip(input)
|
||
|
|
||
|
|
||
|
# Noise level (and other) conditioning
|
||
|
|
||
|
class ConditionedModule(nn.Module):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class UnconditionedModule(ConditionedModule):
|
||
|
def __init__(self, module):
|
||
|
super().__init__()
|
||
|
self.module = module
|
||
|
|
||
|
def forward(self, input, cond=None):
|
||
|
return self.module(input)
|
||
|
|
||
|
|
||
|
class ConditionedSequential(nn.Sequential, ConditionedModule):
|
||
|
def forward(self, input, cond):
|
||
|
for module in self:
|
||
|
if isinstance(module, ConditionedModule):
|
||
|
input = module(input, cond)
|
||
|
else:
|
||
|
input = module(input)
|
||
|
return input
|
||
|
|
||
|
|
||
|
class ConditionedResidualBlock(ConditionedModule):
|
||
|
def __init__(self, *main, skip=None):
|
||
|
super().__init__()
|
||
|
self.main = ConditionedSequential(*main)
|
||
|
self.skip = skip if skip else nn.Identity()
|
||
|
|
||
|
def forward(self, input, cond):
|
||
|
skip = self.skip(input, cond) if isinstance(self.skip, ConditionedModule) else self.skip(input)
|
||
|
return self.main(input, cond) + skip
|
||
|
|
||
|
|
||
|
class AdaGN(ConditionedModule):
|
||
|
def __init__(self, feats_in, c_out, num_groups, eps=1e-5, cond_key='cond'):
|
||
|
super().__init__()
|
||
|
self.num_groups = num_groups
|
||
|
self.eps = eps
|
||
|
self.cond_key = cond_key
|
||
|
self.mapper = nn.Linear(feats_in, c_out * 2)
|
||
|
|
||
|
def forward(self, input, cond):
|
||
|
weight, bias = self.mapper(cond[self.cond_key]).chunk(2, dim=-1)
|
||
|
input = F.group_norm(input, self.num_groups, eps=self.eps)
|
||
|
return torch.addcmul(utils.append_dims(bias, input.ndim), input, utils.append_dims(weight, input.ndim) + 1)
|
||
|
|
||
|
|
||
|
# Attention
|
||
|
|
||
|
class SelfAttention2d(ConditionedModule):
|
||
|
def __init__(self, c_in, n_head, norm, dropout_rate=0.):
|
||
|
super().__init__()
|
||
|
assert c_in % n_head == 0
|
||
|
self.norm_in = norm(c_in)
|
||
|
self.n_head = n_head
|
||
|
self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1)
|
||
|
self.out_proj = nn.Conv2d(c_in, c_in, 1)
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
|
||
|
def forward(self, input, cond):
|
||
|
n, c, h, w = input.shape
|
||
|
qkv = self.qkv_proj(self.norm_in(input, cond))
|
||
|
qkv = qkv.view([n, self.n_head * 3, c // self.n_head, h * w]).transpose(2, 3)
|
||
|
q, k, v = qkv.chunk(3, dim=1)
|
||
|
scale = k.shape[3] ** -0.25
|
||
|
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
|
||
|
att = self.dropout(att)
|
||
|
y = (att @ v).transpose(2, 3).contiguous().view([n, c, h, w])
|
||
|
return input + self.out_proj(y)
|
||
|
|
||
|
|
||
|
class CrossAttention2d(ConditionedModule):
|
||
|
def __init__(self, c_dec, c_enc, n_head, norm_dec, dropout_rate=0.,
|
||
|
cond_key='cross', cond_key_padding='cross_padding'):
|
||
|
super().__init__()
|
||
|
assert c_dec % n_head == 0
|
||
|
self.cond_key = cond_key
|
||
|
self.cond_key_padding = cond_key_padding
|
||
|
self.norm_enc = nn.LayerNorm(c_enc)
|
||
|
self.norm_dec = norm_dec(c_dec)
|
||
|
self.n_head = n_head
|
||
|
self.q_proj = nn.Conv2d(c_dec, c_dec, 1)
|
||
|
self.kv_proj = nn.Linear(c_enc, c_dec * 2)
|
||
|
self.out_proj = nn.Conv2d(c_dec, c_dec, 1)
|
||
|
self.dropout = nn.Dropout(dropout_rate)
|
||
|
|
||
|
def forward(self, input, cond):
|
||
|
n, c, h, w = input.shape
|
||
|
q = self.q_proj(self.norm_dec(input, cond))
|
||
|
q = q.view([n, self.n_head, c // self.n_head, h * w]).transpose(2, 3)
|
||
|
kv = self.kv_proj(self.norm_enc(cond[self.cond_key]))
|
||
|
kv = kv.view([n, -1, self.n_head * 2, c // self.n_head]).transpose(1, 2)
|
||
|
k, v = kv.chunk(2, dim=1)
|
||
|
scale = k.shape[3] ** -0.25
|
||
|
att = ((q * scale) @ (k.transpose(2, 3) * scale))
|
||
|
att = att - (cond[self.cond_key_padding][:, None, None, :]) * 10000
|
||
|
att = att.softmax(3)
|
||
|
att = self.dropout(att)
|
||
|
y = (att @ v).transpose(2, 3)
|
||
|
y = y.contiguous().view([n, c, h, w])
|
||
|
return input + self.out_proj(y)
|
||
|
|
||
|
|
||
|
# Downsampling/upsampling
|
||
|
|
||
|
_kernels = {
|
||
|
'linear':
|
||
|
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
|
||
|
'cubic':
|
||
|
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
|
||
|
0.43359375, 0.11328125, -0.03515625, -0.01171875],
|
||
|
'lanczos3':
|
||
|
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
|
||
|
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
|
||
|
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
|
||
|
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
|
||
|
}
|
||
|
_kernels['bilinear'] = _kernels['linear']
|
||
|
_kernels['bicubic'] = _kernels['cubic']
|
||
|
|
||
|
|
||
|
class Downsample2d(nn.Module):
|
||
|
def __init__(self, kernel='linear', pad_mode='reflect'):
|
||
|
super().__init__()
|
||
|
self.pad_mode = pad_mode
|
||
|
kernel_1d = torch.tensor([_kernels[kernel]])
|
||
|
self.pad = kernel_1d.shape[1] // 2 - 1
|
||
|
self.register_buffer('kernel', kernel_1d.T @ kernel_1d)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = F.pad(x, (self.pad,) * 4, self.pad_mode)
|
||
|
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
|
||
|
indices = torch.arange(x.shape[1], device=x.device)
|
||
|
weight[indices, indices] = self.kernel.to(weight)
|
||
|
return F.conv2d(x, weight, stride=2)
|
||
|
|
||
|
|
||
|
class Upsample2d(nn.Module):
|
||
|
def __init__(self, kernel='linear', pad_mode='reflect'):
|
||
|
super().__init__()
|
||
|
self.pad_mode = pad_mode
|
||
|
kernel_1d = torch.tensor([_kernels[kernel]]) * 2
|
||
|
self.pad = kernel_1d.shape[1] // 2 - 1
|
||
|
self.register_buffer('kernel', kernel_1d.T @ kernel_1d)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode)
|
||
|
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
|
||
|
indices = torch.arange(x.shape[1], device=x.device)
|
||
|
weight[indices, indices] = self.kernel.to(weight)
|
||
|
return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1)
|
||
|
|
||
|
|
||
|
# Embeddings
|
||
|
|
||
|
class FourierFeatures(nn.Module):
|
||
|
def __init__(self, in_features, out_features, std=1.):
|
||
|
super().__init__()
|
||
|
assert out_features % 2 == 0
|
||
|
self.register_buffer('weight', torch.randn([out_features // 2, in_features]) * std)
|
||
|
|
||
|
def forward(self, input):
|
||
|
f = 2 * math.pi * input @ self.weight.T
|
||
|
return torch.cat([f.cos(), f.sin()], dim=-1)
|
||
|
|
||
|
|
||
|
# U-Nets
|
||
|
|
||
|
class UNet(ConditionedModule):
|
||
|
def __init__(self, d_blocks, u_blocks, skip_stages=0):
|
||
|
super().__init__()
|
||
|
self.d_blocks = nn.ModuleList(d_blocks)
|
||
|
self.u_blocks = nn.ModuleList(u_blocks)
|
||
|
self.skip_stages = skip_stages
|
||
|
|
||
|
def forward(self, input, cond):
|
||
|
skips = []
|
||
|
for block in self.d_blocks[self.skip_stages:]:
|
||
|
input = block(input, cond)
|
||
|
skips.append(input)
|
||
|
for i, (block, skip) in enumerate(zip(self.u_blocks, reversed(skips))):
|
||
|
input = block(input, cond, skip if i > 0 else None)
|
||
|
return input
|