2024-04-15 03:34:25 +00:00
|
|
|
#Modified/simplified version of the node from: https://github.com/pamparamm/sd-perturbed-attention
|
|
|
|
#If you want the one with more options see the above repo.
|
|
|
|
|
|
|
|
#My modified one here is more basic but has less chances of breaking with ComfyUI updates.
|
|
|
|
|
|
|
|
import comfy.model_patcher
|
|
|
|
import comfy.samplers
|
|
|
|
|
|
|
|
class PerturbedAttentionGuidance:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
|
|
return {
|
|
|
|
"required": {
|
|
|
|
"model": ("MODEL",),
|
|
|
|
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.01}),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
|
|
FUNCTION = "patch"
|
|
|
|
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
|
|
|
|
def patch(self, model, scale):
|
|
|
|
unet_block = "middle"
|
|
|
|
unet_block_id = 0
|
|
|
|
m = model.clone()
|
|
|
|
|
|
|
|
def perturbed_attention(q, k, v, extra_options, mask=None):
|
|
|
|
return v
|
|
|
|
|
|
|
|
def post_cfg_function(args):
|
|
|
|
model = args["model"]
|
|
|
|
cond_pred = args["cond_denoised"]
|
|
|
|
cond = args["cond"]
|
|
|
|
cfg_result = args["denoised"]
|
|
|
|
sigma = args["sigma"]
|
|
|
|
model_options = args["model_options"].copy()
|
|
|
|
x = args["input"]
|
|
|
|
|
|
|
|
if scale == 0:
|
|
|
|
return cfg_result
|
|
|
|
|
|
|
|
# Replace Self-attention with PAG
|
|
|
|
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, perturbed_attention, "attn1", unet_block, unet_block_id)
|
|
|
|
(pag,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options)
|
|
|
|
|
|
|
|
return cfg_result + (cond_pred - pag) * scale
|
|
|
|
|
2024-04-15 16:14:00 +00:00
|
|
|
m.set_model_sampler_post_cfg_function(post_cfg_function)
|
2024-04-15 03:34:25 +00:00
|
|
|
|
|
|
|
return (m,)
|
|
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
|
|
"PerturbedAttentionGuidance": PerturbedAttentionGuidance,
|
|
|
|
}
|