2024-08-01 08:03:59 +00:00
|
|
|
#Original code can be found on: https://github.com/black-forest-labs/flux
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from torch import Tensor, nn
|
|
|
|
|
|
|
|
from .layers import (
|
|
|
|
DoubleStreamBlock,
|
|
|
|
EmbedND,
|
|
|
|
LastLayer,
|
|
|
|
MLPEmbedder,
|
|
|
|
SingleStreamBlock,
|
|
|
|
timestep_embedding,
|
|
|
|
)
|
|
|
|
|
|
|
|
from einops import rearrange, repeat
|
2024-08-04 19:45:43 +00:00
|
|
|
import comfy.ldm.common_dit
|
2024-08-01 08:03:59 +00:00
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class FluxParams:
|
|
|
|
in_channels: int
|
|
|
|
vec_in_dim: int
|
|
|
|
context_in_dim: int
|
|
|
|
hidden_size: int
|
|
|
|
mlp_ratio: float
|
|
|
|
num_heads: int
|
|
|
|
depth: int
|
|
|
|
depth_single_blocks: int
|
2024-08-01 13:57:01 +00:00
|
|
|
axes_dim: list
|
2024-08-01 08:03:59 +00:00
|
|
|
theta: int
|
|
|
|
qkv_bias: bool
|
|
|
|
guidance_embed: bool
|
|
|
|
|
|
|
|
|
|
|
|
class Flux(nn.Module):
|
|
|
|
"""
|
|
|
|
Transformer model for flow matching on sequences.
|
|
|
|
"""
|
|
|
|
|
2024-08-13 01:22:22 +00:00
|
|
|
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
2024-08-01 08:03:59 +00:00
|
|
|
super().__init__()
|
|
|
|
self.dtype = dtype
|
|
|
|
params = FluxParams(**kwargs)
|
|
|
|
self.params = params
|
2024-08-04 19:45:43 +00:00
|
|
|
self.in_channels = params.in_channels * 2 * 2
|
2024-08-01 08:03:59 +00:00
|
|
|
self.out_channels = self.in_channels
|
|
|
|
if params.hidden_size % params.num_heads != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
|
|
|
)
|
|
|
|
pe_dim = params.hidden_size // params.num_heads
|
|
|
|
if sum(params.axes_dim) != pe_dim:
|
|
|
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
|
|
|
self.hidden_size = params.hidden_size
|
|
|
|
self.num_heads = params.num_heads
|
|
|
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
|
|
|
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
|
|
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
|
|
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
|
|
|
self.guidance_in = (
|
|
|
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
|
|
|
)
|
|
|
|
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
self.double_blocks = nn.ModuleList(
|
|
|
|
[
|
|
|
|
DoubleStreamBlock(
|
|
|
|
self.hidden_size,
|
|
|
|
self.num_heads,
|
|
|
|
mlp_ratio=params.mlp_ratio,
|
|
|
|
qkv_bias=params.qkv_bias,
|
|
|
|
dtype=dtype, device=device, operations=operations
|
|
|
|
)
|
|
|
|
for _ in range(params.depth)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
self.single_blocks = nn.ModuleList(
|
|
|
|
[
|
|
|
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
|
|
|
for _ in range(params.depth_single_blocks)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
2024-08-13 01:22:22 +00:00
|
|
|
if final_layer:
|
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
2024-08-01 08:03:59 +00:00
|
|
|
|
|
|
|
def forward_orig(
|
|
|
|
self,
|
|
|
|
img: Tensor,
|
|
|
|
img_ids: Tensor,
|
|
|
|
txt: Tensor,
|
|
|
|
txt_ids: Tensor,
|
|
|
|
timesteps: Tensor,
|
|
|
|
y: Tensor,
|
2024-08-01 13:57:01 +00:00
|
|
|
guidance: Tensor = None,
|
2024-08-13 01:22:22 +00:00
|
|
|
control=None,
|
2024-08-01 08:03:59 +00:00
|
|
|
) -> Tensor:
|
|
|
|
if img.ndim != 3 or txt.ndim != 3:
|
|
|
|
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
|
|
|
|
|
|
|
# running on sequences img
|
|
|
|
img = self.img_in(img)
|
|
|
|
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
|
|
|
if self.params.guidance_embed:
|
|
|
|
if guidance is None:
|
|
|
|
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
2024-08-14 05:05:17 +00:00
|
|
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
2024-08-01 08:03:59 +00:00
|
|
|
|
2024-08-14 05:05:17 +00:00
|
|
|
vec = vec + self.vector_in(y)
|
2024-08-01 08:03:59 +00:00
|
|
|
txt = self.txt_in(txt)
|
|
|
|
|
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
|
|
pe = self.pe_embedder(ids)
|
|
|
|
|
2024-08-18 02:58:23 +00:00
|
|
|
for i, block in enumerate(self.double_blocks):
|
|
|
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
2024-08-13 01:22:22 +00:00
|
|
|
|
2024-08-18 02:58:23 +00:00
|
|
|
if control is not None: # Controlnet
|
|
|
|
control_i = control.get("input")
|
|
|
|
if i < len(control_i):
|
|
|
|
add = control_i[i]
|
|
|
|
if add is not None:
|
|
|
|
img += add
|
|
|
|
|
|
|
|
img = torch.cat((txt, img), 1)
|
|
|
|
|
|
|
|
for i, block in enumerate(self.single_blocks):
|
|
|
|
img = block(img, vec=vec, pe=pe)
|
|
|
|
|
|
|
|
if control is not None: # Controlnet
|
2024-08-13 01:22:22 +00:00
|
|
|
control_o = control.get("output")
|
|
|
|
if i < len(control_o):
|
|
|
|
add = control_o[i]
|
|
|
|
if add is not None:
|
2024-08-18 02:58:23 +00:00
|
|
|
img[:, txt.shape[1] :, ...] += add
|
2024-08-01 08:03:59 +00:00
|
|
|
|
|
|
|
img = img[:, txt.shape[1] :, ...]
|
|
|
|
|
|
|
|
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
|
|
|
return img
|
|
|
|
|
2024-08-13 01:22:22 +00:00
|
|
|
def forward(self, x, timestep, context, y, guidance, control=None, **kwargs):
|
2024-08-01 08:03:59 +00:00
|
|
|
bs, c, h, w = x.shape
|
2024-08-02 01:03:26 +00:00
|
|
|
patch_size = 2
|
2024-08-04 19:45:43 +00:00
|
|
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
2024-08-02 01:03:26 +00:00
|
|
|
|
|
|
|
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
|
|
|
|
|
|
|
h_len = ((h + (patch_size // 2)) // patch_size)
|
|
|
|
w_len = ((w + (patch_size // 2)) // patch_size)
|
2024-08-01 16:55:28 +00:00
|
|
|
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
|
|
|
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
|
|
|
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
2024-08-01 08:03:59 +00:00
|
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
|
|
|
|
|
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
2024-08-13 01:22:22 +00:00
|
|
|
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control)
|
2024-08-02 01:03:26 +00:00
|
|
|
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|