121 lines
5.5 KiB
Python
121 lines
5.5 KiB
Python
|
|
||
|
def attention_multiply(attn, model, q, k, v, out):
|
||
|
m = model.clone()
|
||
|
sd = model.model_state_dict()
|
||
|
|
||
|
for key in sd:
|
||
|
if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)):
|
||
|
m.add_patches({key: (None,)}, 0.0, q)
|
||
|
if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)):
|
||
|
m.add_patches({key: (None,)}, 0.0, k)
|
||
|
if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)):
|
||
|
m.add_patches({key: (None,)}, 0.0, v)
|
||
|
if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)):
|
||
|
m.add_patches({key: (None,)}, 0.0, out)
|
||
|
|
||
|
return m
|
||
|
|
||
|
|
||
|
class UNetSelfAttentionMultiply:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "model": ("MODEL",),
|
||
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
}}
|
||
|
RETURN_TYPES = ("MODEL",)
|
||
|
FUNCTION = "patch"
|
||
|
|
||
|
CATEGORY = "_for_testing/attention_experiments"
|
||
|
|
||
|
def patch(self, model, q, k, v, out):
|
||
|
m = attention_multiply("attn1", model, q, k, v, out)
|
||
|
return (m, )
|
||
|
|
||
|
class UNetCrossAttentionMultiply:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "model": ("MODEL",),
|
||
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
}}
|
||
|
RETURN_TYPES = ("MODEL",)
|
||
|
FUNCTION = "patch"
|
||
|
|
||
|
CATEGORY = "_for_testing/attention_experiments"
|
||
|
|
||
|
def patch(self, model, q, k, v, out):
|
||
|
m = attention_multiply("attn2", model, q, k, v, out)
|
||
|
return (m, )
|
||
|
|
||
|
class CLIPAttentionMultiply:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "clip": ("CLIP",),
|
||
|
"q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
}}
|
||
|
RETURN_TYPES = ("CLIP",)
|
||
|
FUNCTION = "patch"
|
||
|
|
||
|
CATEGORY = "_for_testing/attention_experiments"
|
||
|
|
||
|
def patch(self, clip, q, k, v, out):
|
||
|
m = clip.clone()
|
||
|
sd = m.patcher.model_state_dict()
|
||
|
|
||
|
for key in sd:
|
||
|
if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"):
|
||
|
m.add_patches({key: (None,)}, 0.0, q)
|
||
|
if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"):
|
||
|
m.add_patches({key: (None,)}, 0.0, k)
|
||
|
if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"):
|
||
|
m.add_patches({key: (None,)}, 0.0, v)
|
||
|
if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
|
||
|
m.add_patches({key: (None,)}, 0.0, out)
|
||
|
return (m, )
|
||
|
|
||
|
class UNetTemporalAttentionMultiply:
|
||
|
@classmethod
|
||
|
def INPUT_TYPES(s):
|
||
|
return {"required": { "model": ("MODEL",),
|
||
|
"self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
"cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
||
|
}}
|
||
|
RETURN_TYPES = ("MODEL",)
|
||
|
FUNCTION = "patch"
|
||
|
|
||
|
CATEGORY = "_for_testing/attention_experiments"
|
||
|
|
||
|
def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
|
||
|
m = model.clone()
|
||
|
sd = model.model_state_dict()
|
||
|
|
||
|
for k in sd:
|
||
|
if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")):
|
||
|
if '.time_stack.' in k:
|
||
|
m.add_patches({k: (None,)}, 0.0, self_temporal)
|
||
|
else:
|
||
|
m.add_patches({k: (None,)}, 0.0, self_structural)
|
||
|
elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")):
|
||
|
if '.time_stack.' in k:
|
||
|
m.add_patches({k: (None,)}, 0.0, cross_temporal)
|
||
|
else:
|
||
|
m.add_patches({k: (None,)}, 0.0, cross_structural)
|
||
|
return (m, )
|
||
|
|
||
|
NODE_CLASS_MAPPINGS = {
|
||
|
"UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
|
||
|
"UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
|
||
|
"CLIPAttentionMultiply": CLIPAttentionMultiply,
|
||
|
"UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
|
||
|
}
|