39 lines
1.8 KiB
Python
39 lines
1.8 KiB
Python
|
from comfy import sd1_clip
|
||
|
import comfy.text_encoders.sd3_clip
|
||
|
import os
|
||
|
from transformers import T5TokenizerFast
|
||
|
|
||
|
|
||
|
class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel):
|
||
|
def __init__(self, **kwargs):
|
||
|
kwargs["attention_mask"] = True
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
|
||
|
class MochiT5XXL(sd1_clip.SD1ClipModel):
|
||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||
|
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
|
||
|
|
||
|
|
||
|
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||
|
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
|
||
|
|
||
|
|
||
|
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):
|
||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||
|
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
|
||
|
|
||
|
|
||
|
def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None):
|
||
|
class MochiTEModel_(MochiT5XXL):
|
||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||
|
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
|
||
|
model_options = model_options.copy()
|
||
|
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
|
||
|
if dtype is None:
|
||
|
dtype = dtype_t5
|
||
|
super().__init__(device=device, dtype=dtype, model_options=model_options)
|
||
|
return MochiTEModel_
|