ComfyUI/web/scripts/pnginfo.js

325 lines
9.9 KiB
JavaScript
Raw Normal View History

import { api } from "./api.js";
export function getPngMetadata(file) {
return new Promise((r) => {
const reader = new FileReader();
reader.onload = (event) => {
// Get the PNG data as a Uint8Array
const pngData = new Uint8Array(event.target.result);
const dataView = new DataView(pngData.buffer);
// Check that the PNG signature is present
if (dataView.getUint32(0) !== 0x89504e47) {
console.error("Not a valid PNG file");
r();
return;
}
// Start searching for chunks after the PNG signature
let offset = 8;
let txt_chunks = {};
// Loop through the chunks in the PNG file
while (offset < pngData.length) {
// Get the length of the chunk
const length = dataView.getUint32(offset);
// Get the chunk type
const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8));
if (type === "tEXt") {
// Get the keyword
let keyword_end = offset + 8;
while (pngData[keyword_end] !== 0) {
keyword_end++;
}
const keyword = String.fromCharCode(...pngData.slice(offset + 8, keyword_end));
// Get the text
2023-04-08 15:00:03 +00:00
const contentArraySegment = pngData.slice(keyword_end + 1, offset + 8 + length);
const contentJson = Array.from(contentArraySegment).map(s=>String.fromCharCode(s)).join('')
txt_chunks[keyword] = contentJson;
}
offset += 12 + length;
}
r(txt_chunks);
};
reader.readAsArrayBuffer(file);
});
}
2023-05-18 06:41:21 +00:00
export function getLatentMetadata(file) {
return new Promise((r) => {
const reader = new FileReader();
reader.onload = (event) => {
const safetensorsData = new Uint8Array(event.target.result);
const dataView = new DataView(safetensorsData.buffer);
let header_size = dataView.getUint32(0, true);
let offset = 8;
let header = JSON.parse(String.fromCharCode(...safetensorsData.slice(offset, offset + header_size)));
r(header.__metadata__);
};
reader.readAsArrayBuffer(file);
});
}
export async function importA1111(graph, parameters) {
const p = parameters.lastIndexOf("\nSteps:");
if (p > -1) {
const embeddings = await api.getEmbeddings();
const opts = parameters
.substr(p)
.split(",")
.reduce((p, n) => {
const s = n.split(":");
p[s[0].trim().toLowerCase()] = s[1].trim();
return p;
}, {});
const p2 = parameters.lastIndexOf("\nNegative prompt:", p);
if (p2 > -1) {
let positive = parameters.substr(0, p2).trim();
let negative = parameters.substring(p2 + 18, p).trim();
const ckptNode = LiteGraph.createNode("CheckpointLoaderSimple");
const clipSkipNode = LiteGraph.createNode("CLIPSetLastLayer");
const positiveNode = LiteGraph.createNode("CLIPTextEncode");
const negativeNode = LiteGraph.createNode("CLIPTextEncode");
const samplerNode = LiteGraph.createNode("KSampler");
const imageNode = LiteGraph.createNode("EmptyLatentImage");
const vaeNode = LiteGraph.createNode("VAEDecode");
const vaeLoaderNode = LiteGraph.createNode("VAELoader");
const saveNode = LiteGraph.createNode("SaveImage");
let hrSamplerNode = null;
const ceil64 = (v) => Math.ceil(v / 64) * 64;
function getWidget(node, name) {
return node.widgets.find((w) => w.name === name);
}
function setWidgetValue(node, name, value, isOptionPrefix) {
const w = getWidget(node, name);
if (isOptionPrefix) {
const o = w.options.values.find((w) => w.startsWith(value));
if (o) {
w.value = o;
} else {
console.warn(`Unknown value '${value}' for widget '${name}'`, node);
w.value = value;
}
} else {
w.value = value;
}
}
function createLoraNodes(clipNode, text, prevClip, prevModel) {
const loras = [];
text = text.replace(/<lora:([^:]+:[^>]+)>/g, function (m, c) {
const s = c.split(":");
const weight = parseFloat(s[1]);
if (isNaN(weight)) {
console.warn("Invalid LORA", m);
} else {
loras.push({ name: s[0], weight });
}
return "";
});
for (const l of loras) {
const loraNode = LiteGraph.createNode("LoraLoader");
graph.add(loraNode);
setWidgetValue(loraNode, "lora_name", l.name, true);
setWidgetValue(loraNode, "strength_model", l.weight);
setWidgetValue(loraNode, "strength_clip", l.weight);
prevModel.node.connect(prevModel.index, loraNode, 0);
prevClip.node.connect(prevClip.index, loraNode, 1);
prevModel = { node: loraNode, index: 0 };
prevClip = { node: loraNode, index: 1 };
}
prevClip.node.connect(1, clipNode, 0);
prevModel.node.connect(0, samplerNode, 0);
if (hrSamplerNode) {
prevModel.node.connect(0, hrSamplerNode, 0);
}
return { text, prevModel, prevClip };
}
function replaceEmbeddings(text) {
if(!embeddings.length) return text;
return text.replaceAll(
new RegExp(
"\\b(" + embeddings.map((e) => e.replace(/[.*+?^${}()|[\]\\]/g, "\\$&")).join("\\b|\\b") + ")\\b",
"ig"
),
"embedding:$1"
);
}
function popOpt(name) {
const v = opts[name];
delete opts[name];
return v;
}
graph.clear();
graph.add(ckptNode);
graph.add(clipSkipNode);
graph.add(positiveNode);
graph.add(negativeNode);
graph.add(samplerNode);
graph.add(imageNode);
graph.add(vaeNode);
graph.add(vaeLoaderNode);
graph.add(saveNode);
ckptNode.connect(1, clipSkipNode, 0);
clipSkipNode.connect(0, positiveNode, 0);
clipSkipNode.connect(0, negativeNode, 0);
ckptNode.connect(0, samplerNode, 0);
positiveNode.connect(0, samplerNode, 1);
negativeNode.connect(0, samplerNode, 2);
imageNode.connect(0, samplerNode, 3);
vaeNode.connect(0, saveNode, 0);
samplerNode.connect(0, vaeNode, 0);
vaeLoaderNode.connect(0, vaeNode, 1);
const handlers = {
model(v) {
setWidgetValue(ckptNode, "ckpt_name", v, true);
},
"cfg scale"(v) {
setWidgetValue(samplerNode, "cfg", +v);
},
"clip skip"(v) {
setWidgetValue(clipSkipNode, "stop_at_clip_layer", -v);
},
sampler(v) {
let name = v.toLowerCase().replace("++", "pp").replaceAll(" ", "_");
if (name.includes("karras")) {
name = name.replace("karras", "").replace(/_+$/, "");
setWidgetValue(samplerNode, "scheduler", "karras");
} else {
setWidgetValue(samplerNode, "scheduler", "normal");
}
const w = getWidget(samplerNode, "sampler_name");
const o = w.options.values.find((w) => w === name || w === "sample_" + name);
if (o) {
setWidgetValue(samplerNode, "sampler_name", o);
}
},
size(v) {
const wxh = v.split("x");
const w = ceil64(+wxh[0]);
const h = ceil64(+wxh[1]);
const hrUp = popOpt("hires upscale");
const hrSz = popOpt("hires resize");
let hrMethod = popOpt("hires upscaler");
setWidgetValue(imageNode, "width", w);
setWidgetValue(imageNode, "height", h);
if (hrUp || hrSz) {
let uw, uh;
if (hrUp) {
uw = w * hrUp;
uh = h * hrUp;
} else {
const s = hrSz.split("x");
uw = +s[0];
uh = +s[1];
}
let upscaleNode;
let latentNode;
if (hrMethod.startsWith("Latent")) {
latentNode = upscaleNode = LiteGraph.createNode("LatentUpscale");
graph.add(upscaleNode);
samplerNode.connect(0, upscaleNode, 0);
switch (hrMethod) {
case "Latent (nearest-exact)":
hrMethod = "nearest-exact";
break;
}
setWidgetValue(upscaleNode, "upscale_method", hrMethod, true);
} else {
const decode = LiteGraph.createNode("VAEDecodeTiled");
graph.add(decode);
samplerNode.connect(0, decode, 0);
vaeLoaderNode.connect(0, decode, 1);
const upscaleLoaderNode = LiteGraph.createNode("UpscaleModelLoader");
graph.add(upscaleLoaderNode);
setWidgetValue(upscaleLoaderNode, "model_name", hrMethod, true);
const modelUpscaleNode = LiteGraph.createNode("ImageUpscaleWithModel");
graph.add(modelUpscaleNode);
decode.connect(0, modelUpscaleNode, 1);
upscaleLoaderNode.connect(0, modelUpscaleNode, 0);
upscaleNode = LiteGraph.createNode("ImageScale");
graph.add(upscaleNode);
modelUpscaleNode.connect(0, upscaleNode, 0);
const vaeEncodeNode = (latentNode = LiteGraph.createNode("VAEEncodeTiled"));
graph.add(vaeEncodeNode);
upscaleNode.connect(0, vaeEncodeNode, 0);
vaeLoaderNode.connect(0, vaeEncodeNode, 1);
}
setWidgetValue(upscaleNode, "width", ceil64(uw));
setWidgetValue(upscaleNode, "height", ceil64(uh));
hrSamplerNode = LiteGraph.createNode("KSampler");
graph.add(hrSamplerNode);
ckptNode.connect(0, hrSamplerNode, 0);
positiveNode.connect(0, hrSamplerNode, 1);
negativeNode.connect(0, hrSamplerNode, 2);
latentNode.connect(0, hrSamplerNode, 3);
hrSamplerNode.connect(0, vaeNode, 0);
}
},
steps(v) {
setWidgetValue(samplerNode, "steps", +v);
},
seed(v) {
setWidgetValue(samplerNode, "seed", +v);
},
};
for (const opt in opts) {
if (opt in handlers) {
handlers[opt](popOpt(opt));
}
}
if (hrSamplerNode) {
setWidgetValue(hrSamplerNode, "steps", getWidget(samplerNode, "steps").value);
setWidgetValue(hrSamplerNode, "cfg", getWidget(samplerNode, "cfg").value);
setWidgetValue(hrSamplerNode, "scheduler", getWidget(samplerNode, "scheduler").value);
setWidgetValue(hrSamplerNode, "sampler_name", getWidget(samplerNode, "sampler_name").value);
setWidgetValue(hrSamplerNode, "denoise", +(popOpt("denoising strength") || "1"));
}
let n = createLoraNodes(positiveNode, positive, { node: clipSkipNode, index: 0 }, { node: ckptNode, index: 0 });
positive = n.text;
n = createLoraNodes(negativeNode, negative, n.prevClip, n.prevModel);
negative = n.text;
setWidgetValue(positiveNode, "text", replaceEmbeddings(positive));
setWidgetValue(negativeNode, "text", replaceEmbeddings(negative));
graph.arrange();
for (const opt of ["model hash", "ensd"]) {
delete opts[opt];
}
console.warn("Unhandled parameters:", opts);
}
}
}