2024-11-22 13:44:42 +00:00
|
|
|
import torch
|
|
|
|
from torch import nn
|
|
|
|
import comfy.ldm.modules.attention
|
|
|
|
from comfy.ldm.genmo.joint_model.layers import RMSNorm
|
|
|
|
import comfy.ldm.common_dit
|
|
|
|
from einops import rearrange
|
|
|
|
import math
|
|
|
|
from typing import Dict, Optional, Tuple
|
|
|
|
|
|
|
|
from .symmetric_patchifier import SymmetricPatchifier
|
|
|
|
|
|
|
|
|
|
|
|
def get_timestep_embedding(
|
|
|
|
timesteps: torch.Tensor,
|
|
|
|
embedding_dim: int,
|
|
|
|
flip_sin_to_cos: bool = False,
|
|
|
|
downscale_freq_shift: float = 1,
|
|
|
|
scale: float = 1,
|
|
|
|
max_period: int = 10000,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
|
|
|
|
|
|
|
Args
|
|
|
|
timesteps (torch.Tensor):
|
|
|
|
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
|
|
|
embedding_dim (int):
|
|
|
|
the dimension of the output.
|
|
|
|
flip_sin_to_cos (bool):
|
|
|
|
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
|
|
|
downscale_freq_shift (float):
|
|
|
|
Controls the delta between frequencies between dimensions
|
|
|
|
scale (float):
|
|
|
|
Scaling factor applied to the embeddings.
|
|
|
|
max_period (int):
|
|
|
|
Controls the maximum frequency of the embeddings
|
|
|
|
Returns
|
|
|
|
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
|
|
|
"""
|
|
|
|
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
|
|
|
|
|
|
|
half_dim = embedding_dim // 2
|
|
|
|
exponent = -math.log(max_period) * torch.arange(
|
|
|
|
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
|
|
|
)
|
|
|
|
exponent = exponent / (half_dim - downscale_freq_shift)
|
|
|
|
|
|
|
|
emb = torch.exp(exponent)
|
|
|
|
emb = timesteps[:, None].float() * emb[None, :]
|
|
|
|
|
|
|
|
# scale embeddings
|
|
|
|
emb = scale * emb
|
|
|
|
|
|
|
|
# concat sine and cosine embeddings
|
|
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
|
|
|
|
|
|
|
# flip sine and cosine embeddings
|
|
|
|
if flip_sin_to_cos:
|
|
|
|
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
|
|
|
|
|
|
|
# zero pad
|
|
|
|
if embedding_dim % 2 == 1:
|
|
|
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
|
|
|
return emb
|
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedding(nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
in_channels: int,
|
|
|
|
time_embed_dim: int,
|
|
|
|
act_fn: str = "silu",
|
|
|
|
out_dim: int = None,
|
|
|
|
post_act_fn: Optional[str] = None,
|
|
|
|
cond_proj_dim=None,
|
|
|
|
sample_proj_bias=True,
|
|
|
|
dtype=None, device=None, operations=None,
|
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.linear_1 = operations.Linear(in_channels, time_embed_dim, sample_proj_bias, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
if cond_proj_dim is not None:
|
|
|
|
self.cond_proj = operations.Linear(cond_proj_dim, in_channels, bias=False, dtype=dtype, device=device)
|
|
|
|
else:
|
|
|
|
self.cond_proj = None
|
|
|
|
|
|
|
|
self.act = nn.SiLU()
|
|
|
|
|
|
|
|
if out_dim is not None:
|
|
|
|
time_embed_dim_out = out_dim
|
|
|
|
else:
|
|
|
|
time_embed_dim_out = time_embed_dim
|
|
|
|
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
if post_act_fn is None:
|
|
|
|
self.post_act = None
|
|
|
|
# else:
|
|
|
|
# self.post_act = get_activation(post_act_fn)
|
|
|
|
|
|
|
|
def forward(self, sample, condition=None):
|
|
|
|
if condition is not None:
|
|
|
|
sample = sample + self.cond_proj(condition)
|
|
|
|
sample = self.linear_1(sample)
|
|
|
|
|
|
|
|
if self.act is not None:
|
|
|
|
sample = self.act(sample)
|
|
|
|
|
|
|
|
sample = self.linear_2(sample)
|
|
|
|
|
|
|
|
if self.post_act is not None:
|
|
|
|
sample = self.post_act(sample)
|
|
|
|
return sample
|
|
|
|
|
|
|
|
|
|
|
|
class Timesteps(nn.Module):
|
|
|
|
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
|
|
|
|
super().__init__()
|
|
|
|
self.num_channels = num_channels
|
|
|
|
self.flip_sin_to_cos = flip_sin_to_cos
|
|
|
|
self.downscale_freq_shift = downscale_freq_shift
|
|
|
|
self.scale = scale
|
|
|
|
|
|
|
|
def forward(self, timesteps):
|
|
|
|
t_emb = get_timestep_embedding(
|
|
|
|
timesteps,
|
|
|
|
self.num_channels,
|
|
|
|
flip_sin_to_cos=self.flip_sin_to_cos,
|
|
|
|
downscale_freq_shift=self.downscale_freq_shift,
|
|
|
|
scale=self.scale,
|
|
|
|
)
|
|
|
|
return t_emb
|
|
|
|
|
|
|
|
|
|
|
|
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
|
|
|
|
"""
|
|
|
|
For PixArt-Alpha.
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.outdim = size_emb_dim
|
|
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
|
|
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
|
|
|
|
|
|
|
|
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
|
|
|
|
timesteps_proj = self.time_proj(timestep)
|
|
|
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
|
|
|
|
return timesteps_emb
|
|
|
|
|
|
|
|
|
|
|
|
class AdaLayerNormSingle(nn.Module):
|
|
|
|
r"""
|
|
|
|
Norm layer adaptive layer norm single (adaLN-single).
|
|
|
|
|
|
|
|
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
embedding_dim (`int`): The size of each embedding vector.
|
|
|
|
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
|
|
|
|
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
|
|
|
|
)
|
|
|
|
|
|
|
|
self.silu = nn.SiLU()
|
|
|
|
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
timestep: torch.Tensor,
|
|
|
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
|
|
|
batch_size: Optional[int] = None,
|
|
|
|
hidden_dtype: Optional[torch.dtype] = None,
|
|
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
# No modulation happening here.
|
|
|
|
added_cond_kwargs = added_cond_kwargs or {"resolution": None, "aspect_ratio": None}
|
|
|
|
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
|
|
|
|
return self.linear(self.silu(embedded_timestep)), embedded_timestep
|
|
|
|
|
|
|
|
class PixArtAlphaTextProjection(nn.Module):
|
|
|
|
"""
|
|
|
|
Projects caption embeddings. Also handles dropout for classifier-free guidance.
|
|
|
|
|
|
|
|
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
if out_features is None:
|
|
|
|
out_features = hidden_size
|
|
|
|
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
|
|
|
|
if act_fn == "gelu_tanh":
|
|
|
|
self.act_1 = nn.GELU(approximate="tanh")
|
|
|
|
elif act_fn == "silu":
|
|
|
|
self.act_1 = nn.SiLU()
|
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown activation function: {act_fn}")
|
|
|
|
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
def forward(self, caption):
|
|
|
|
hidden_states = self.linear_1(caption)
|
|
|
|
hidden_states = self.act_1(hidden_states)
|
|
|
|
hidden_states = self.linear_2(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class GELU_approx(nn.Module):
|
|
|
|
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
self.proj = operations.Linear(dim_in, dim_out, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return torch.nn.functional.gelu(self.proj(x), approximate="tanh")
|
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
|
|
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
inner_dim = int(dim * mult)
|
|
|
|
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
|
|
|
|
|
|
|
|
self.net = nn.Sequential(
|
|
|
|
project_in,
|
|
|
|
nn.Dropout(dropout),
|
|
|
|
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
|
|
|
|
)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return self.net(x)
|
|
|
|
|
|
|
|
|
|
|
|
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
|
|
|
|
cos_freqs = freqs_cis[0]
|
|
|
|
sin_freqs = freqs_cis[1]
|
|
|
|
|
|
|
|
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
|
|
|
|
t1, t2 = t_dup.unbind(dim=-1)
|
|
|
|
t_dup = torch.stack((-t2, t1), dim=-1)
|
|
|
|
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
|
|
|
|
|
|
|
|
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
inner_dim = dim_head * heads
|
|
|
|
context_dim = query_dim if context_dim is None else context_dim
|
|
|
|
self.attn_precision = attn_precision
|
|
|
|
|
|
|
|
self.heads = heads
|
|
|
|
self.dim_head = dim_head
|
|
|
|
|
|
|
|
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
|
|
|
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
|
|
|
|
|
|
|
|
def forward(self, x, context=None, mask=None, pe=None):
|
|
|
|
q = self.to_q(x)
|
|
|
|
context = x if context is None else context
|
|
|
|
k = self.to_k(context)
|
|
|
|
v = self.to_v(context)
|
|
|
|
|
|
|
|
q = self.q_norm(q)
|
|
|
|
k = self.k_norm(k)
|
|
|
|
|
|
|
|
if pe is not None:
|
|
|
|
q = apply_rotary_emb(q, pe)
|
|
|
|
k = apply_rotary_emb(k, pe)
|
|
|
|
|
|
|
|
if mask is None:
|
|
|
|
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision)
|
|
|
|
else:
|
|
|
|
out = comfy.ldm.modules.attention.optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision)
|
|
|
|
return self.to_out(out)
|
|
|
|
|
|
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
|
|
def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.attn_precision = attn_precision
|
|
|
|
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
|
|
|
|
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
|
|
|
|
|
|
|
|
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
|
|
|
|
|
|
|
|
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
|
|
|
|
|
|
|
|
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None):
|
2024-11-22 22:17:11 +00:00
|
|
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
|
2024-11-22 13:44:42 +00:00
|
|
|
|
|
|
|
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe) * gate_msa
|
|
|
|
|
|
|
|
x += self.attn2(x, context=context, mask=attention_mask)
|
|
|
|
|
|
|
|
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
|
|
|
|
x += self.ff(y) * gate_mlp
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
def get_fractional_positions(indices_grid, max_pos):
|
|
|
|
fractional_positions = torch.stack(
|
|
|
|
[
|
|
|
|
indices_grid[:, i] / max_pos[i]
|
|
|
|
for i in range(3)
|
|
|
|
],
|
|
|
|
dim=-1,
|
|
|
|
)
|
|
|
|
return fractional_positions
|
|
|
|
|
|
|
|
|
|
|
|
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
|
|
|
|
dtype = torch.float32 #self.dtype
|
|
|
|
|
|
|
|
fractional_positions = get_fractional_positions(indices_grid, max_pos)
|
|
|
|
|
|
|
|
start = 1
|
|
|
|
end = theta
|
|
|
|
device = fractional_positions.device
|
|
|
|
|
|
|
|
indices = theta ** (
|
|
|
|
torch.linspace(
|
|
|
|
math.log(start, theta),
|
|
|
|
math.log(end, theta),
|
|
|
|
dim // 6,
|
|
|
|
device=device,
|
|
|
|
dtype=dtype,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
indices = indices.to(dtype=dtype)
|
|
|
|
|
|
|
|
indices = indices * math.pi / 2
|
|
|
|
|
|
|
|
freqs = (
|
|
|
|
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
|
|
|
|
.transpose(-1, -2)
|
|
|
|
.flatten(2)
|
|
|
|
)
|
|
|
|
|
|
|
|
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
|
|
|
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
|
|
|
if dim % 6 != 0:
|
|
|
|
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
|
|
|
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
|
|
|
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
|
|
|
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
|
|
|
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
|
|
|
|
|
|
|
|
|
|
|
|
class LTXVModel(torch.nn.Module):
|
|
|
|
def __init__(self,
|
|
|
|
in_channels=128,
|
|
|
|
cross_attention_dim=2048,
|
|
|
|
attention_head_dim=64,
|
|
|
|
num_attention_heads=32,
|
|
|
|
|
|
|
|
caption_channels=4096,
|
|
|
|
num_layers=28,
|
|
|
|
|
|
|
|
|
|
|
|
positional_embedding_theta=10000.0,
|
|
|
|
positional_embedding_max_pos=[20, 2048, 2048],
|
|
|
|
dtype=None, device=None, operations=None, **kwargs):
|
|
|
|
super().__init__()
|
|
|
|
self.dtype = dtype
|
|
|
|
self.out_channels = in_channels
|
|
|
|
self.inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
|
|
|
|
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(
|
|
|
|
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
|
|
|
|
)
|
|
|
|
|
|
|
|
# self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
self.caption_projection = PixArtAlphaTextProjection(
|
|
|
|
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
|
|
|
|
)
|
|
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
|
|
[
|
|
|
|
BasicTransformerBlock(
|
|
|
|
self.inner_dim,
|
|
|
|
num_attention_heads,
|
|
|
|
attention_head_dim,
|
|
|
|
context_dim=cross_attention_dim,
|
|
|
|
# attn_precision=attn_precision,
|
|
|
|
dtype=dtype, device=device, operations=operations
|
|
|
|
)
|
|
|
|
for d in range(num_layers)
|
|
|
|
]
|
|
|
|
)
|
|
|
|
|
|
|
|
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
|
|
|
|
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
|
|
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
|
|
|
|
|
|
|
|
self.patchifier = SymmetricPatchifier(1)
|
|
|
|
|
2024-11-23 15:33:05 +00:00
|
|
|
def forward(self, x, timestep, context, attention_mask, frame_rate=25, guiding_latent=None, transformer_options={}, **kwargs):
|
|
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
|
|
|
2024-11-22 13:44:42 +00:00
|
|
|
indices_grid = self.patchifier.get_grid(
|
|
|
|
orig_num_frames=x.shape[2],
|
|
|
|
orig_height=x.shape[3],
|
|
|
|
orig_width=x.shape[4],
|
|
|
|
batch_size=x.shape[0],
|
2024-11-23 15:33:05 +00:00
|
|
|
scale_grid=((1 / frame_rate) * 8, 32, 32),
|
2024-11-22 13:44:42 +00:00
|
|
|
device=x.device,
|
|
|
|
)
|
|
|
|
|
|
|
|
if guiding_latent is not None:
|
|
|
|
ts = torch.ones([x.shape[0], 1, x.shape[2], x.shape[3], x.shape[4]], device=x.device, dtype=x.dtype)
|
|
|
|
input_ts = timestep.view([timestep.shape[0]] + [1] * (x.ndim - 1))
|
|
|
|
ts *= input_ts
|
|
|
|
ts[:, :, 0] = 0.0
|
|
|
|
timestep = self.patchifier.patchify(ts)
|
|
|
|
input_x = x.clone()
|
|
|
|
x[:, :, 0] = guiding_latent[:, :, 0]
|
|
|
|
|
|
|
|
orig_shape = list(x.shape)
|
|
|
|
|
|
|
|
x = self.patchifier.patchify(x)
|
|
|
|
|
|
|
|
x = self.patchify_proj(x)
|
|
|
|
timestep = timestep * 1000.0
|
|
|
|
|
|
|
|
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
|
|
|
|
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
|
|
|
|
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
|
|
|
|
|
|
|
|
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
|
|
|
|
|
|
|
|
batch_size = x.shape[0]
|
|
|
|
timestep, embedded_timestep = self.adaln_single(
|
|
|
|
timestep.flatten(),
|
|
|
|
{"resolution": None, "aspect_ratio": None},
|
|
|
|
batch_size=batch_size,
|
|
|
|
hidden_dtype=x.dtype,
|
|
|
|
)
|
|
|
|
# Second dimension is 1 or number of tokens (if timestep_per_token)
|
|
|
|
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
|
|
|
embedded_timestep = embedded_timestep.view(
|
|
|
|
batch_size, -1, embedded_timestep.shape[-1]
|
|
|
|
)
|
|
|
|
|
|
|
|
# 2. Blocks
|
|
|
|
if self.caption_projection is not None:
|
|
|
|
batch_size = x.shape[0]
|
|
|
|
context = self.caption_projection(context)
|
|
|
|
context = context.view(
|
|
|
|
batch_size, -1, x.shape[-1]
|
|
|
|
)
|
|
|
|
|
2024-11-23 15:33:05 +00:00
|
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
|
|
for i, block in enumerate(self.transformer_blocks):
|
|
|
|
if ("double_block", i) in blocks_replace:
|
|
|
|
def block_wrap(args):
|
|
|
|
out = {}
|
|
|
|
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"])
|
|
|
|
return out
|
|
|
|
|
|
|
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "attention_mask": attention_mask, "vec": timestep, "pe": pe}, {"original_block": block_wrap})
|
|
|
|
x = out["img"]
|
|
|
|
else:
|
|
|
|
x = block(
|
|
|
|
x,
|
|
|
|
context=context,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
timestep=timestep,
|
|
|
|
pe=pe
|
|
|
|
)
|
2024-11-22 13:44:42 +00:00
|
|
|
|
|
|
|
# 3. Output
|
|
|
|
scale_shift_values = (
|
2024-11-22 22:17:11 +00:00
|
|
|
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
|
2024-11-22 13:44:42 +00:00
|
|
|
)
|
|
|
|
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
|
|
|
|
x = self.norm_out(x)
|
|
|
|
# Modulation
|
|
|
|
x = x * (1 + scale) + shift
|
|
|
|
x = self.proj_out(x)
|
|
|
|
|
|
|
|
x = self.patchifier.unpatchify(
|
|
|
|
latents=x,
|
|
|
|
output_height=orig_shape[3],
|
|
|
|
output_width=orig_shape[4],
|
|
|
|
output_num_frames=orig_shape[2],
|
|
|
|
out_channels=orig_shape[1] // math.prod(self.patchifier.patch_size),
|
|
|
|
)
|
|
|
|
|
|
|
|
if guiding_latent is not None:
|
|
|
|
x[:, :, 0] = (input_x[:, :, 0] - guiding_latent[:, :, 0]) / input_ts[:, :, 0]
|
|
|
|
|
|
|
|
# print("res", x)
|
|
|
|
return x
|