196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
|
import math
|
||
|
from typing import Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange
|
||
|
|
||
|
|
||
|
class DualConv3d(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
stride: Union[int, Tuple[int, int, int]] = 1,
|
||
|
padding: Union[int, Tuple[int, int, int]] = 0,
|
||
|
dilation: Union[int, Tuple[int, int, int]] = 1,
|
||
|
groups=1,
|
||
|
bias=True,
|
||
|
):
|
||
|
super(DualConv3d, self).__init__()
|
||
|
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
# Ensure kernel_size, stride, padding, and dilation are tuples of length 3
|
||
|
if isinstance(kernel_size, int):
|
||
|
kernel_size = (kernel_size, kernel_size, kernel_size)
|
||
|
if kernel_size == (1, 1, 1):
|
||
|
raise ValueError(
|
||
|
"kernel_size must be greater than 1. Use make_linear_nd instead."
|
||
|
)
|
||
|
if isinstance(stride, int):
|
||
|
stride = (stride, stride, stride)
|
||
|
if isinstance(padding, int):
|
||
|
padding = (padding, padding, padding)
|
||
|
if isinstance(dilation, int):
|
||
|
dilation = (dilation, dilation, dilation)
|
||
|
|
||
|
# Set parameters for convolutions
|
||
|
self.groups = groups
|
||
|
self.bias = bias
|
||
|
|
||
|
# Define the size of the channels after the first convolution
|
||
|
intermediate_channels = (
|
||
|
out_channels if in_channels < out_channels else in_channels
|
||
|
)
|
||
|
|
||
|
# Define parameters for the first convolution
|
||
|
self.weight1 = nn.Parameter(
|
||
|
torch.Tensor(
|
||
|
intermediate_channels,
|
||
|
in_channels // groups,
|
||
|
1,
|
||
|
kernel_size[1],
|
||
|
kernel_size[2],
|
||
|
)
|
||
|
)
|
||
|
self.stride1 = (1, stride[1], stride[2])
|
||
|
self.padding1 = (0, padding[1], padding[2])
|
||
|
self.dilation1 = (1, dilation[1], dilation[2])
|
||
|
if bias:
|
||
|
self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
|
||
|
else:
|
||
|
self.register_parameter("bias1", None)
|
||
|
|
||
|
# Define parameters for the second convolution
|
||
|
self.weight2 = nn.Parameter(
|
||
|
torch.Tensor(
|
||
|
out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
|
||
|
)
|
||
|
)
|
||
|
self.stride2 = (stride[0], 1, 1)
|
||
|
self.padding2 = (padding[0], 0, 0)
|
||
|
self.dilation2 = (dilation[0], 1, 1)
|
||
|
if bias:
|
||
|
self.bias2 = nn.Parameter(torch.Tensor(out_channels))
|
||
|
else:
|
||
|
self.register_parameter("bias2", None)
|
||
|
|
||
|
# Initialize weights and biases
|
||
|
self.reset_parameters()
|
||
|
|
||
|
def reset_parameters(self):
|
||
|
nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
|
||
|
nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
|
||
|
if self.bias:
|
||
|
fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
|
||
|
bound1 = 1 / math.sqrt(fan_in1)
|
||
|
nn.init.uniform_(self.bias1, -bound1, bound1)
|
||
|
fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
|
||
|
bound2 = 1 / math.sqrt(fan_in2)
|
||
|
nn.init.uniform_(self.bias2, -bound2, bound2)
|
||
|
|
||
|
def forward(self, x, use_conv3d=False, skip_time_conv=False):
|
||
|
if use_conv3d:
|
||
|
return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
|
||
|
else:
|
||
|
return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
|
||
|
|
||
|
def forward_with_3d(self, x, skip_time_conv):
|
||
|
# First convolution
|
||
|
x = F.conv3d(
|
||
|
x,
|
||
|
self.weight1,
|
||
|
self.bias1,
|
||
|
self.stride1,
|
||
|
self.padding1,
|
||
|
self.dilation1,
|
||
|
self.groups,
|
||
|
)
|
||
|
|
||
|
if skip_time_conv:
|
||
|
return x
|
||
|
|
||
|
# Second convolution
|
||
|
x = F.conv3d(
|
||
|
x,
|
||
|
self.weight2,
|
||
|
self.bias2,
|
||
|
self.stride2,
|
||
|
self.padding2,
|
||
|
self.dilation2,
|
||
|
self.groups,
|
||
|
)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def forward_with_2d(self, x, skip_time_conv):
|
||
|
b, c, d, h, w = x.shape
|
||
|
|
||
|
# First 2D convolution
|
||
|
x = rearrange(x, "b c d h w -> (b d) c h w")
|
||
|
# Squeeze the depth dimension out of weight1 since it's 1
|
||
|
weight1 = self.weight1.squeeze(2)
|
||
|
# Select stride, padding, and dilation for the 2D convolution
|
||
|
stride1 = (self.stride1[1], self.stride1[2])
|
||
|
padding1 = (self.padding1[1], self.padding1[2])
|
||
|
dilation1 = (self.dilation1[1], self.dilation1[2])
|
||
|
x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups)
|
||
|
|
||
|
_, _, h, w = x.shape
|
||
|
|
||
|
if skip_time_conv:
|
||
|
x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
|
||
|
return x
|
||
|
|
||
|
# Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
|
||
|
x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
|
||
|
|
||
|
# Reshape weight2 to match the expected dimensions for conv1d
|
||
|
weight2 = self.weight2.squeeze(-1).squeeze(-1)
|
||
|
# Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
|
||
|
stride2 = self.stride2[0]
|
||
|
padding2 = self.padding2[0]
|
||
|
dilation2 = self.dilation2[0]
|
||
|
x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups)
|
||
|
x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
|
||
|
|
||
|
return x
|
||
|
|
||
|
@property
|
||
|
def weight(self):
|
||
|
return self.weight2
|
||
|
|
||
|
|
||
|
def test_dual_conv3d_consistency():
|
||
|
# Initialize parameters
|
||
|
in_channels = 3
|
||
|
out_channels = 5
|
||
|
kernel_size = (3, 3, 3)
|
||
|
stride = (2, 2, 2)
|
||
|
padding = (1, 1, 1)
|
||
|
|
||
|
# Create an instance of the DualConv3d class
|
||
|
dual_conv3d = DualConv3d(
|
||
|
in_channels=in_channels,
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
bias=True,
|
||
|
)
|
||
|
|
||
|
# Example input tensor
|
||
|
test_input = torch.randn(1, 3, 10, 10, 10)
|
||
|
|
||
|
# Perform forward passes with both 3D and 2D settings
|
||
|
output_conv3d = dual_conv3d(test_input, use_conv3d=True)
|
||
|
output_2d = dual_conv3d(test_input, use_conv3d=False)
|
||
|
|
||
|
# Assert that the outputs from both methods are sufficiently close
|
||
|
assert torch.allclose(
|
||
|
output_conv3d, output_2d, atol=1e-6
|
||
|
), "Outputs are not consistent between 3D and 2D convolutions."
|