454 lines
16 KiB
Python
454 lines
16 KiB
Python
|
# pylint: skip-file
|
||
|
# type: ignore
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
from torch.nn import init
|
||
|
from torch.nn.modules.batchnorm import _BatchNorm
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs):
|
||
|
"""Initialize network weights.
|
||
|
Args:
|
||
|
module_list (list[nn.Module] | nn.Module): Modules to be initialized.
|
||
|
scale (float): Scale initialized weights, especially for residual
|
||
|
blocks. Default: 1.
|
||
|
bias_fill (float): The value to fill bias. Default: 0
|
||
|
kwargs (dict): Other arguments for initialization function.
|
||
|
"""
|
||
|
if not isinstance(module_list, list):
|
||
|
module_list = [module_list]
|
||
|
for module in module_list:
|
||
|
for m in module.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
init.kaiming_normal_(m.weight, **kwargs)
|
||
|
m.weight.data *= scale
|
||
|
if m.bias is not None:
|
||
|
m.bias.data.fill_(bias_fill)
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
init.kaiming_normal_(m.weight, **kwargs)
|
||
|
m.weight.data *= scale
|
||
|
if m.bias is not None:
|
||
|
m.bias.data.fill_(bias_fill)
|
||
|
elif isinstance(m, _BatchNorm):
|
||
|
init.constant_(m.weight, 1)
|
||
|
if m.bias is not None:
|
||
|
m.bias.data.fill_(bias_fill)
|
||
|
|
||
|
|
||
|
class NormStyleCode(nn.Module):
|
||
|
def forward(self, x):
|
||
|
"""Normalize the style codes.
|
||
|
Args:
|
||
|
x (Tensor): Style codes with shape (b, c).
|
||
|
Returns:
|
||
|
Tensor: Normalized tensor.
|
||
|
"""
|
||
|
return x * torch.rsqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
|
||
|
|
||
|
|
||
|
class ModulatedConv2d(nn.Module):
|
||
|
"""Modulated Conv2d used in StyleGAN2.
|
||
|
There is no bias in ModulatedConv2d.
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
kernel_size (int): Size of the convolving kernel.
|
||
|
num_style_feat (int): Channel number of style features.
|
||
|
demodulate (bool): Whether to demodulate in the conv layer. Default: True.
|
||
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
|
||
|
eps (float): A value added to the denominator for numerical stability. Default: 1e-8.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
eps=1e-8,
|
||
|
):
|
||
|
super(ModulatedConv2d, self).__init__()
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.kernel_size = kernel_size
|
||
|
self.demodulate = demodulate
|
||
|
self.sample_mode = sample_mode
|
||
|
self.eps = eps
|
||
|
|
||
|
# modulation inside each modulated conv
|
||
|
self.modulation = nn.Linear(num_style_feat, in_channels, bias=True)
|
||
|
# initialization
|
||
|
default_init_weights(
|
||
|
self.modulation,
|
||
|
scale=1,
|
||
|
bias_fill=1,
|
||
|
a=0,
|
||
|
mode="fan_in",
|
||
|
nonlinearity="linear",
|
||
|
)
|
||
|
|
||
|
self.weight = nn.Parameter(
|
||
|
torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)
|
||
|
/ math.sqrt(in_channels * kernel_size**2)
|
||
|
)
|
||
|
self.padding = kernel_size // 2
|
||
|
|
||
|
def forward(self, x, style):
|
||
|
"""Forward function.
|
||
|
Args:
|
||
|
x (Tensor): Tensor with shape (b, c, h, w).
|
||
|
style (Tensor): Tensor with shape (b, num_style_feat).
|
||
|
Returns:
|
||
|
Tensor: Modulated tensor after convolution.
|
||
|
"""
|
||
|
b, c, h, w = x.shape # c = c_in
|
||
|
# weight modulation
|
||
|
style = self.modulation(style).view(b, 1, c, 1, 1)
|
||
|
# self.weight: (1, c_out, c_in, k, k); style: (b, 1, c, 1, 1)
|
||
|
weight = self.weight * style # (b, c_out, c_in, k, k)
|
||
|
|
||
|
if self.demodulate:
|
||
|
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps)
|
||
|
weight = weight * demod.view(b, self.out_channels, 1, 1, 1)
|
||
|
|
||
|
weight = weight.view(
|
||
|
b * self.out_channels, c, self.kernel_size, self.kernel_size
|
||
|
)
|
||
|
|
||
|
# upsample or downsample if necessary
|
||
|
if self.sample_mode == "upsample":
|
||
|
x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=False)
|
||
|
elif self.sample_mode == "downsample":
|
||
|
x = F.interpolate(x, scale_factor=0.5, mode="bilinear", align_corners=False)
|
||
|
|
||
|
b, c, h, w = x.shape
|
||
|
x = x.view(1, b * c, h, w)
|
||
|
# weight: (b*c_out, c_in, k, k), groups=b
|
||
|
out = F.conv2d(x, weight, padding=self.padding, groups=b)
|
||
|
out = out.view(b, self.out_channels, *out.shape[2:4])
|
||
|
|
||
|
return out
|
||
|
|
||
|
def __repr__(self):
|
||
|
return (
|
||
|
f"{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, "
|
||
|
f"kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})"
|
||
|
)
|
||
|
|
||
|
|
||
|
class StyleConv(nn.Module):
|
||
|
"""Style conv used in StyleGAN2.
|
||
|
Args:
|
||
|
in_channels (int): Channel number of the input.
|
||
|
out_channels (int): Channel number of the output.
|
||
|
kernel_size (int): Size of the convolving kernel.
|
||
|
num_style_feat (int): Channel number of style features.
|
||
|
demodulate (bool): Whether demodulate in the conv layer. Default: True.
|
||
|
sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
):
|
||
|
super(StyleConv, self).__init__()
|
||
|
self.modulated_conv = ModulatedConv2d(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size,
|
||
|
num_style_feat,
|
||
|
demodulate=demodulate,
|
||
|
sample_mode=sample_mode,
|
||
|
)
|
||
|
self.weight = nn.Parameter(torch.zeros(1)) # for noise injection
|
||
|
self.bias = nn.Parameter(torch.zeros(1, out_channels, 1, 1))
|
||
|
self.activate = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||
|
|
||
|
def forward(self, x, style, noise=None):
|
||
|
# modulate
|
||
|
out = self.modulated_conv(x, style) * 2**0.5 # for conversion
|
||
|
# noise injection
|
||
|
if noise is None:
|
||
|
b, _, h, w = out.shape
|
||
|
noise = out.new_empty(b, 1, h, w).normal_()
|
||
|
out = out + self.weight * noise
|
||
|
# add bias
|
||
|
out = out + self.bias
|
||
|
# activation
|
||
|
out = self.activate(out)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ToRGB(nn.Module):
|
||
|
"""To RGB (image space) from features.
|
||
|
Args:
|
||
|
in_channels (int): Channel number of input.
|
||
|
num_style_feat (int): Channel number of style features.
|
||
|
upsample (bool): Whether to upsample. Default: True.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, in_channels, num_style_feat, upsample=True):
|
||
|
super(ToRGB, self).__init__()
|
||
|
self.upsample = upsample
|
||
|
self.modulated_conv = ModulatedConv2d(
|
||
|
in_channels,
|
||
|
3,
|
||
|
kernel_size=1,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=False,
|
||
|
sample_mode=None,
|
||
|
)
|
||
|
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
||
|
|
||
|
def forward(self, x, style, skip=None):
|
||
|
"""Forward function.
|
||
|
Args:
|
||
|
x (Tensor): Feature tensor with shape (b, c, h, w).
|
||
|
style (Tensor): Tensor with shape (b, num_style_feat).
|
||
|
skip (Tensor): Base/skip tensor. Default: None.
|
||
|
Returns:
|
||
|
Tensor: RGB images.
|
||
|
"""
|
||
|
out = self.modulated_conv(x, style)
|
||
|
out = out + self.bias
|
||
|
if skip is not None:
|
||
|
if self.upsample:
|
||
|
skip = F.interpolate(
|
||
|
skip, scale_factor=2, mode="bilinear", align_corners=False
|
||
|
)
|
||
|
out = out + skip
|
||
|
return out
|
||
|
|
||
|
|
||
|
class ConstantInput(nn.Module):
|
||
|
"""Constant input.
|
||
|
Args:
|
||
|
num_channel (int): Channel number of constant input.
|
||
|
size (int): Spatial size of constant input.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, num_channel, size):
|
||
|
super(ConstantInput, self).__init__()
|
||
|
self.weight = nn.Parameter(torch.randn(1, num_channel, size, size))
|
||
|
|
||
|
def forward(self, batch):
|
||
|
out = self.weight.repeat(batch, 1, 1, 1)
|
||
|
return out
|
||
|
|
||
|
|
||
|
class StyleGAN2GeneratorClean(nn.Module):
|
||
|
"""Clean version of StyleGAN2 Generator.
|
||
|
Args:
|
||
|
out_size (int): The spatial size of outputs.
|
||
|
num_style_feat (int): Channel number of style features. Default: 512.
|
||
|
num_mlp (int): Layer number of MLP style layers. Default: 8.
|
||
|
channel_multiplier (int): Channel multiplier for large networks of StyleGAN2. Default: 2.
|
||
|
narrow (float): Narrow ratio for channels. Default: 1.0.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, out_size, num_style_feat=512, num_mlp=8, channel_multiplier=2, narrow=1
|
||
|
):
|
||
|
super(StyleGAN2GeneratorClean, self).__init__()
|
||
|
# Style MLP layers
|
||
|
self.num_style_feat = num_style_feat
|
||
|
style_mlp_layers = [NormStyleCode()]
|
||
|
for i in range(num_mlp):
|
||
|
style_mlp_layers.extend(
|
||
|
[
|
||
|
nn.Linear(num_style_feat, num_style_feat, bias=True),
|
||
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
||
|
]
|
||
|
)
|
||
|
self.style_mlp = nn.Sequential(*style_mlp_layers)
|
||
|
# initialization
|
||
|
default_init_weights(
|
||
|
self.style_mlp,
|
||
|
scale=1,
|
||
|
bias_fill=0,
|
||
|
a=0.2,
|
||
|
mode="fan_in",
|
||
|
nonlinearity="leaky_relu",
|
||
|
)
|
||
|
|
||
|
# channel list
|
||
|
channels = {
|
||
|
"4": int(512 * narrow),
|
||
|
"8": int(512 * narrow),
|
||
|
"16": int(512 * narrow),
|
||
|
"32": int(512 * narrow),
|
||
|
"64": int(256 * channel_multiplier * narrow),
|
||
|
"128": int(128 * channel_multiplier * narrow),
|
||
|
"256": int(64 * channel_multiplier * narrow),
|
||
|
"512": int(32 * channel_multiplier * narrow),
|
||
|
"1024": int(16 * channel_multiplier * narrow),
|
||
|
}
|
||
|
self.channels = channels
|
||
|
|
||
|
self.constant_input = ConstantInput(channels["4"], size=4)
|
||
|
self.style_conv1 = StyleConv(
|
||
|
channels["4"],
|
||
|
channels["4"],
|
||
|
kernel_size=3,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
)
|
||
|
self.to_rgb1 = ToRGB(channels["4"], num_style_feat, upsample=False)
|
||
|
|
||
|
self.log_size = int(math.log(out_size, 2))
|
||
|
self.num_layers = (self.log_size - 2) * 2 + 1
|
||
|
self.num_latent = self.log_size * 2 - 2
|
||
|
|
||
|
self.style_convs = nn.ModuleList()
|
||
|
self.to_rgbs = nn.ModuleList()
|
||
|
self.noises = nn.Module()
|
||
|
|
||
|
in_channels = channels["4"]
|
||
|
# noise
|
||
|
for layer_idx in range(self.num_layers):
|
||
|
resolution = 2 ** ((layer_idx + 5) // 2)
|
||
|
shape = [1, 1, resolution, resolution]
|
||
|
self.noises.register_buffer(f"noise{layer_idx}", torch.randn(*shape))
|
||
|
# style convs and to_rgbs
|
||
|
for i in range(3, self.log_size + 1):
|
||
|
out_channels = channels[f"{2**i}"]
|
||
|
self.style_convs.append(
|
||
|
StyleConv(
|
||
|
in_channels,
|
||
|
out_channels,
|
||
|
kernel_size=3,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode="upsample",
|
||
|
)
|
||
|
)
|
||
|
self.style_convs.append(
|
||
|
StyleConv(
|
||
|
out_channels,
|
||
|
out_channels,
|
||
|
kernel_size=3,
|
||
|
num_style_feat=num_style_feat,
|
||
|
demodulate=True,
|
||
|
sample_mode=None,
|
||
|
)
|
||
|
)
|
||
|
self.to_rgbs.append(ToRGB(out_channels, num_style_feat, upsample=True))
|
||
|
in_channels = out_channels
|
||
|
|
||
|
def make_noise(self):
|
||
|
"""Make noise for noise injection."""
|
||
|
device = self.constant_input.weight.device
|
||
|
noises = [torch.randn(1, 1, 4, 4, device=device)]
|
||
|
|
||
|
for i in range(3, self.log_size + 1):
|
||
|
for _ in range(2):
|
||
|
noises.append(torch.randn(1, 1, 2**i, 2**i, device=device))
|
||
|
|
||
|
return noises
|
||
|
|
||
|
def get_latent(self, x):
|
||
|
return self.style_mlp(x)
|
||
|
|
||
|
def mean_latent(self, num_latent):
|
||
|
latent_in = torch.randn(
|
||
|
num_latent, self.num_style_feat, device=self.constant_input.weight.device
|
||
|
)
|
||
|
latent = self.style_mlp(latent_in).mean(0, keepdim=True)
|
||
|
return latent
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
styles,
|
||
|
input_is_latent=False,
|
||
|
noise=None,
|
||
|
randomize_noise=True,
|
||
|
truncation=1,
|
||
|
truncation_latent=None,
|
||
|
inject_index=None,
|
||
|
return_latents=False,
|
||
|
):
|
||
|
"""Forward function for StyleGAN2GeneratorClean.
|
||
|
Args:
|
||
|
styles (list[Tensor]): Sample codes of styles.
|
||
|
input_is_latent (bool): Whether input is latent style. Default: False.
|
||
|
noise (Tensor | None): Input noise or None. Default: None.
|
||
|
randomize_noise (bool): Randomize noise, used when 'noise' is False. Default: True.
|
||
|
truncation (float): The truncation ratio. Default: 1.
|
||
|
truncation_latent (Tensor | None): The truncation latent tensor. Default: None.
|
||
|
inject_index (int | None): The injection index for mixing noise. Default: None.
|
||
|
return_latents (bool): Whether to return style latents. Default: False.
|
||
|
"""
|
||
|
# style codes -> latents with Style MLP layer
|
||
|
if not input_is_latent:
|
||
|
styles = [self.style_mlp(s) for s in styles]
|
||
|
# noises
|
||
|
if noise is None:
|
||
|
if randomize_noise:
|
||
|
noise = [None] * self.num_layers # for each style conv layer
|
||
|
else: # use the stored noise
|
||
|
noise = [
|
||
|
getattr(self.noises, f"noise{i}") for i in range(self.num_layers)
|
||
|
]
|
||
|
# style truncation
|
||
|
if truncation < 1:
|
||
|
style_truncation = []
|
||
|
for style in styles:
|
||
|
style_truncation.append(
|
||
|
truncation_latent + truncation * (style - truncation_latent)
|
||
|
)
|
||
|
styles = style_truncation
|
||
|
# get style latents with injection
|
||
|
if len(styles) == 1:
|
||
|
inject_index = self.num_latent
|
||
|
|
||
|
if styles[0].ndim < 3:
|
||
|
# repeat latent code for all the layers
|
||
|
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||
|
else: # used for encoder with different latent code for each layer
|
||
|
latent = styles[0]
|
||
|
elif len(styles) == 2: # mixing noises
|
||
|
if inject_index is None:
|
||
|
inject_index = random.randint(1, self.num_latent - 1)
|
||
|
latent1 = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
||
|
latent2 = (
|
||
|
styles[1].unsqueeze(1).repeat(1, self.num_latent - inject_index, 1)
|
||
|
)
|
||
|
latent = torch.cat([latent1, latent2], 1)
|
||
|
|
||
|
# main generation
|
||
|
out = self.constant_input(latent.shape[0])
|
||
|
out = self.style_conv1(out, latent[:, 0], noise=noise[0])
|
||
|
skip = self.to_rgb1(out, latent[:, 1])
|
||
|
|
||
|
i = 1
|
||
|
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
||
|
self.style_convs[::2],
|
||
|
self.style_convs[1::2],
|
||
|
noise[1::2],
|
||
|
noise[2::2],
|
||
|
self.to_rgbs,
|
||
|
):
|
||
|
out = conv1(out, latent[:, i], noise=noise1)
|
||
|
out = conv2(out, latent[:, i + 1], noise=noise2)
|
||
|
skip = to_rgb(out, latent[:, i + 2], skip) # feature back to the rgb space
|
||
|
i += 2
|
||
|
|
||
|
image = skip
|
||
|
|
||
|
if return_latents:
|
||
|
return image, latent
|
||
|
else:
|
||
|
return image, None
|