2023-01-03 06:53:32 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import numpy as np
|
|
|
|
from functools import partial
|
|
|
|
|
2023-05-04 22:07:41 +00:00
|
|
|
from .util import extract_into_tensor, make_beta_schedule
|
|
|
|
from comfy.ldm.util import default
|
2023-01-03 06:53:32 +00:00
|
|
|
|
|
|
|
|
|
|
|
class AbstractLowScaleModel(nn.Module):
|
|
|
|
# for concatenating a downsampled image to the latent representation
|
|
|
|
def __init__(self, noise_schedule_config=None):
|
|
|
|
super(AbstractLowScaleModel, self).__init__()
|
|
|
|
if noise_schedule_config is not None:
|
|
|
|
self.register_schedule(**noise_schedule_config)
|
|
|
|
|
|
|
|
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
|
|
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
|
|
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
|
|
|
cosine_s=cosine_s)
|
|
|
|
alphas = 1. - betas
|
|
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
|
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
|
|
|
|
|
|
|
timesteps, = betas.shape
|
|
|
|
self.num_timesteps = int(timesteps)
|
|
|
|
self.linear_start = linear_start
|
|
|
|
self.linear_end = linear_end
|
|
|
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
|
|
|
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32)
|
|
|
|
|
|
|
|
self.register_buffer('betas', to_torch(betas))
|
|
|
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
|
|
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
|
|
|
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
|
|
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
|
|
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
|
|
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
|
|
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
|
|
|
|
|
|
|
def q_sample(self, x_start, t, noise=None):
|
|
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
2023-12-26 10:02:02 +00:00
|
|
|
return (extract_into_tensor(self.sqrt_alphas_cumprod.to(x_start.device), t, x_start.shape) * x_start +
|
|
|
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod.to(x_start.device), t, x_start.shape) * noise)
|
2023-01-03 06:53:32 +00:00
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
return x, None
|
|
|
|
|
|
|
|
def decode(self, x):
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
class SimpleImageConcat(AbstractLowScaleModel):
|
|
|
|
# no noise level conditioning
|
|
|
|
def __init__(self):
|
|
|
|
super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
|
|
|
|
self.max_noise_level = 0
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
# fix to constant noise level
|
|
|
|
return x, torch.zeros(x.shape[0], device=x.device).long()
|
|
|
|
|
|
|
|
|
|
|
|
class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
|
|
|
|
def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
|
|
|
|
super().__init__(noise_schedule_config=noise_schedule_config)
|
|
|
|
self.max_noise_level = max_noise_level
|
|
|
|
|
|
|
|
def forward(self, x, noise_level=None):
|
|
|
|
if noise_level is None:
|
|
|
|
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
|
|
|
else:
|
|
|
|
assert isinstance(noise_level, torch.Tensor)
|
|
|
|
z = self.q_sample(x, noise_level)
|
|
|
|
return z, noise_level
|
|
|
|
|
|
|
|
|
|
|
|
|