2024-06-15 16:14:56 +00:00
# code adapted from: https://github.com/Stability-AI/stable-audio-tools
from comfy . ldm . modules . attention import optimized_attention
import typing as tp
import torch
from einops import rearrange
from torch import nn
from torch . nn import functional as F
import math
2024-07-30 09:03:20 +00:00
import comfy . ops
2024-06-15 16:14:56 +00:00
class FourierFeatures ( nn . Module ) :
def __init__ ( self , in_features , out_features , std = 1. , dtype = None , device = None ) :
super ( ) . __init__ ( )
assert out_features % 2 == 0
self . weight = nn . Parameter ( torch . empty (
[ out_features / / 2 , in_features ] , dtype = dtype , device = device ) )
def forward ( self , input ) :
2024-07-30 09:03:20 +00:00
f = 2 * math . pi * input @ comfy . ops . cast_to_input ( self . weight . T , input )
2024-06-15 16:14:56 +00:00
return torch . cat ( [ f . cos ( ) , f . sin ( ) ] , dim = - 1 )
# norms
class LayerNorm ( nn . Module ) :
def __init__ ( self , dim , bias = False , fix_scale = False , dtype = None , device = None ) :
"""
bias - less layernorm has been shown to be more stable . most newer models have moved towards rmsnorm , also bias - less
"""
super ( ) . __init__ ( )
self . gamma = nn . Parameter ( torch . empty ( dim , dtype = dtype , device = device ) )
if bias :
self . beta = nn . Parameter ( torch . empty ( dim , dtype = dtype , device = device ) )
else :
self . beta = None
def forward ( self , x ) :
beta = self . beta
2024-07-30 09:03:20 +00:00
if beta is not None :
beta = comfy . ops . cast_to_input ( beta , x )
return F . layer_norm ( x , x . shape [ - 1 : ] , weight = comfy . ops . cast_to_input ( self . gamma , x ) , bias = beta )
2024-06-15 16:14:56 +00:00
class GLU ( nn . Module ) :
def __init__ (
self ,
dim_in ,
dim_out ,
activation ,
use_conv = False ,
conv_kernel_size = 3 ,
dtype = None ,
device = None ,
operations = None ,
) :
super ( ) . __init__ ( )
self . act = activation
self . proj = operations . Linear ( dim_in , dim_out * 2 , dtype = dtype , device = device ) if not use_conv else operations . Conv1d ( dim_in , dim_out * 2 , conv_kernel_size , padding = ( conv_kernel_size / / 2 ) , dtype = dtype , device = device )
self . use_conv = use_conv
def forward ( self , x ) :
if self . use_conv :
x = rearrange ( x , ' b n d -> b d n ' )
x = self . proj ( x )
x = rearrange ( x , ' b d n -> b n d ' )
else :
x = self . proj ( x )
x , gate = x . chunk ( 2 , dim = - 1 )
return x * self . act ( gate )
class AbsolutePositionalEmbedding ( nn . Module ) :
def __init__ ( self , dim , max_seq_len ) :
super ( ) . __init__ ( )
self . scale = dim * * - 0.5
self . max_seq_len = max_seq_len
self . emb = nn . Embedding ( max_seq_len , dim )
def forward ( self , x , pos = None , seq_start_pos = None ) :
seq_len , device = x . shape [ 1 ] , x . device
assert seq_len < = self . max_seq_len , f ' you are passing in a sequence length of { seq_len } but your absolute positional embedding has a max sequence length of { self . max_seq_len } '
if pos is None :
pos = torch . arange ( seq_len , device = device )
if seq_start_pos is not None :
pos = ( pos - seq_start_pos [ . . . , None ] ) . clamp ( min = 0 )
pos_emb = self . emb ( pos )
pos_emb = pos_emb * self . scale
return pos_emb
class ScaledSinusoidalEmbedding ( nn . Module ) :
def __init__ ( self , dim , theta = 10000 ) :
super ( ) . __init__ ( )
assert ( dim % 2 ) == 0 , ' dimension must be divisible by 2 '
self . scale = nn . Parameter ( torch . ones ( 1 ) * dim * * - 0.5 )
half_dim = dim / / 2
freq_seq = torch . arange ( half_dim ) . float ( ) / half_dim
inv_freq = theta * * - freq_seq
self . register_buffer ( ' inv_freq ' , inv_freq , persistent = False )
def forward ( self , x , pos = None , seq_start_pos = None ) :
seq_len , device = x . shape [ 1 ] , x . device
if pos is None :
pos = torch . arange ( seq_len , device = device )
if seq_start_pos is not None :
pos = pos - seq_start_pos [ . . . , None ]
emb = torch . einsum ( ' i, j -> i j ' , pos , self . inv_freq )
emb = torch . cat ( ( emb . sin ( ) , emb . cos ( ) ) , dim = - 1 )
return emb * self . scale
class RotaryEmbedding ( nn . Module ) :
def __init__ (
self ,
dim ,
use_xpos = False ,
scale_base = 512 ,
interpolation_factor = 1. ,
base = 10000 ,
2024-07-30 09:03:20 +00:00
base_rescale_factor = 1. ,
dtype = None ,
device = None ,
2024-06-15 16:14:56 +00:00
) :
super ( ) . __init__ ( )
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base * = base_rescale_factor * * ( dim / ( dim - 2 ) )
2024-07-30 09:03:20 +00:00
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self . register_buffer ( ' inv_freq ' , torch . empty ( ( dim / / 2 , ) , device = device , dtype = dtype ) )
2024-06-15 16:14:56 +00:00
assert interpolation_factor > = 1.
self . interpolation_factor = interpolation_factor
if not use_xpos :
self . register_buffer ( ' scale ' , None )
return
scale = ( torch . arange ( 0 , dim , 2 ) + 0.4 * dim ) / ( 1.4 * dim )
self . scale_base = scale_base
self . register_buffer ( ' scale ' , scale )
def forward_from_seq_len ( self , seq_len , device , dtype ) :
# device = self.inv_freq.device
t = torch . arange ( seq_len , device = device , dtype = dtype )
return self . forward ( t )
def forward ( self , t ) :
# device = self.inv_freq.device
device = t . device
dtype = t . dtype
# t = t.to(torch.float32)
t = t / self . interpolation_factor
2024-07-30 09:03:20 +00:00
freqs = torch . einsum ( ' i , j -> i j ' , t , comfy . ops . cast_to_input ( self . inv_freq , t ) )
2024-06-15 16:14:56 +00:00
freqs = torch . cat ( ( freqs , freqs ) , dim = - 1 )
if self . scale is None :
return freqs , 1.
power = ( torch . arange ( seq_len , device = device ) - ( seq_len / / 2 ) ) / self . scale_base
2024-07-30 09:03:20 +00:00
scale = comfy . ops . cast_to_input ( self . scale , t ) * * rearrange ( power , ' n -> n 1 ' )
2024-06-15 16:14:56 +00:00
scale = torch . cat ( ( scale , scale ) , dim = - 1 )
return freqs , scale
def rotate_half ( x ) :
x = rearrange ( x , ' ... (j d) -> ... j d ' , j = 2 )
x1 , x2 = x . unbind ( dim = - 2 )
return torch . cat ( ( - x2 , x1 ) , dim = - 1 )
def apply_rotary_pos_emb ( t , freqs , scale = 1 ) :
out_dtype = t . dtype
# cast to float32 if necessary for numerical stability
dtype = t . dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
rot_dim , seq_len = freqs . shape [ - 1 ] , t . shape [ - 2 ]
freqs , t = freqs . to ( dtype ) , t . to ( dtype )
freqs = freqs [ - seq_len : , : ]
if t . ndim == 4 and freqs . ndim == 3 :
freqs = rearrange ( freqs , ' b n d -> b 1 n d ' )
# partial rotary embeddings, Wang et al. GPT-J
t , t_unrotated = t [ . . . , : rot_dim ] , t [ . . . , rot_dim : ]
t = ( t * freqs . cos ( ) * scale ) + ( rotate_half ( t ) * freqs . sin ( ) * scale )
t , t_unrotated = t . to ( out_dtype ) , t_unrotated . to ( out_dtype )
return torch . cat ( ( t , t_unrotated ) , dim = - 1 )
class FeedForward ( nn . Module ) :
def __init__ (
self ,
dim ,
dim_out = None ,
mult = 4 ,
no_bias = False ,
glu = True ,
use_conv = False ,
conv_kernel_size = 3 ,
zero_init_output = True ,
dtype = None ,
device = None ,
operations = None ,
) :
super ( ) . __init__ ( )
inner_dim = int ( dim * mult )
# Default to SwiGLU
activation = nn . SiLU ( )
dim_out = dim if dim_out is None else dim_out
if glu :
linear_in = GLU ( dim , inner_dim , activation , dtype = dtype , device = device , operations = operations )
else :
linear_in = nn . Sequential (
Rearrange ( ' b n d -> b d n ' ) if use_conv else nn . Identity ( ) ,
operations . Linear ( dim , inner_dim , bias = not no_bias , dtype = dtype , device = device ) if not use_conv else operations . Conv1d ( dim , inner_dim , conv_kernel_size , padding = ( conv_kernel_size / / 2 ) , bias = not no_bias , dtype = dtype , device = device ) ,
Rearrange ( ' b n d -> b d n ' ) if use_conv else nn . Identity ( ) ,
activation
)
linear_out = operations . Linear ( inner_dim , dim_out , bias = not no_bias , dtype = dtype , device = device ) if not use_conv else operations . Conv1d ( inner_dim , dim_out , conv_kernel_size , padding = ( conv_kernel_size / / 2 ) , bias = not no_bias , dtype = dtype , device = device )
# # init last linear layer to 0
# if zero_init_output:
# nn.init.zeros_(linear_out.weight)
# if not no_bias:
# nn.init.zeros_(linear_out.bias)
self . ff = nn . Sequential (
linear_in ,
Rearrange ( ' b d n -> b n d ' ) if use_conv else nn . Identity ( ) ,
linear_out ,
Rearrange ( ' b n d -> b d n ' ) if use_conv else nn . Identity ( ) ,
)
def forward ( self , x ) :
return self . ff ( x )
class Attention ( nn . Module ) :
def __init__ (
self ,
dim ,
dim_heads = 64 ,
dim_context = None ,
causal = False ,
zero_init_output = True ,
qk_norm = False ,
natten_kernel_size = None ,
dtype = None ,
device = None ,
operations = None ,
) :
super ( ) . __init__ ( )
self . dim = dim
self . dim_heads = dim_heads
self . causal = causal
dim_kv = dim_context if dim_context is not None else dim
self . num_heads = dim / / dim_heads
self . kv_heads = dim_kv / / dim_heads
if dim_context is not None :
self . to_q = operations . Linear ( dim , dim , bias = False , dtype = dtype , device = device )
self . to_kv = operations . Linear ( dim_kv , dim_kv * 2 , bias = False , dtype = dtype , device = device )
else :
self . to_qkv = operations . Linear ( dim , dim * 3 , bias = False , dtype = dtype , device = device )
self . to_out = operations . Linear ( dim , dim , bias = False , dtype = dtype , device = device )
# if zero_init_output:
# nn.init.zeros_(self.to_out.weight)
self . qk_norm = qk_norm
def forward (
self ,
x ,
context = None ,
m ask = None ,
context_mask = None ,
rotary_pos_emb = None ,
causal = None
) :
h , kv_h , has_context = self . num_heads , self . kv_heads , context is not None
kv_input = context if has_context else x
if hasattr ( self , ' to_q ' ) :
# Use separate linear projections for q and k/v
q = self . to_q ( x )
q = rearrange ( q , ' b n (h d) -> b h n d ' , h = h )
k , v = self . to_kv ( kv_input ) . chunk ( 2 , dim = - 1 )
k , v = map ( lambda t : rearrange ( t , ' b n (h d) -> b h n d ' , h = kv_h ) , ( k , v ) )
else :
# Use fused linear projection
q , k , v = self . to_qkv ( x ) . chunk ( 3 , dim = - 1 )
q , k , v = map ( lambda t : rearrange ( t , ' b n (h d) -> b h n d ' , h = h ) , ( q , k , v ) )
# Normalize q and k for cosine sim attention
if self . qk_norm :
q = F . normalize ( q , dim = - 1 )
k = F . normalize ( k , dim = - 1 )
if rotary_pos_emb is not None and not has_context :
freqs , _ = rotary_pos_emb
q_dtype = q . dtype
k_dtype = k . dtype
q = q . to ( torch . float32 )
k = k . to ( torch . float32 )
freqs = freqs . to ( torch . float32 )
q = apply_rotary_pos_emb ( q , freqs )
k = apply_rotary_pos_emb ( k , freqs )
q = q . to ( q_dtype )
k = k . to ( k_dtype )
input_mask = context_mask
if input_mask is None and not has_context :
input_mask = mask
# determine masking
masks = [ ]
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
if input_mask is not None :
input_mask = rearrange ( input_mask , ' b j -> b 1 1 j ' )
masks . append ( ~ input_mask )
# Other masks will be added here later
if len ( masks ) > 0 :
final_attn_mask = ~ or_reduce ( masks )
n , device = q . shape [ - 2 ] , q . device
causal = self . causal if causal is None else causal
if n == 1 and causal :
causal = False
if h != kv_h :
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = h / / kv_h
k , v = map ( lambda t : t . repeat_interleave ( heads_per_kv_head , dim = 1 ) , ( k , v ) )
out = optimized_attention ( q , k , v , h , skip_reshape = True )
out = self . to_out ( out )
if mask is not None :
mask = rearrange ( mask , ' b n -> b n 1 ' )
out = out . masked_fill ( ~ mask , 0. )
return out
class ConformerModule ( nn . Module ) :
def __init__ (
self ,
dim ,
norm_kwargs = { } ,
) :
super ( ) . __init__ ( )
self . dim = dim
self . in_norm = LayerNorm ( dim , * * norm_kwargs )
self . pointwise_conv = nn . Conv1d ( dim , dim , kernel_size = 1 , bias = False )
self . glu = GLU ( dim , dim , nn . SiLU ( ) )
self . depthwise_conv = nn . Conv1d ( dim , dim , kernel_size = 17 , groups = dim , padding = 8 , bias = False )
self . mid_norm = LayerNorm ( dim , * * norm_kwargs ) # This is a batch norm in the original but I don't like batch norm
self . swish = nn . SiLU ( )
self . pointwise_conv_2 = nn . Conv1d ( dim , dim , kernel_size = 1 , bias = False )
def forward ( self , x ) :
x = self . in_norm ( x )
x = rearrange ( x , ' b n d -> b d n ' )
x = self . pointwise_conv ( x )
x = rearrange ( x , ' b d n -> b n d ' )
x = self . glu ( x )
x = rearrange ( x , ' b n d -> b d n ' )
x = self . depthwise_conv ( x )
x = rearrange ( x , ' b d n -> b n d ' )
x = self . mid_norm ( x )
x = self . swish ( x )
x = rearrange ( x , ' b n d -> b d n ' )
x = self . pointwise_conv_2 ( x )
x = rearrange ( x , ' b d n -> b n d ' )
return x
class TransformerBlock ( nn . Module ) :
def __init__ (
self ,
dim ,
dim_heads = 64 ,
cross_attend = False ,
dim_context = None ,
global_cond_dim = None ,
causal = False ,
zero_init_branch_outputs = True ,
conformer = False ,
layer_ix = - 1 ,
remove_norms = False ,
attn_kwargs = { } ,
ff_kwargs = { } ,
norm_kwargs = { } ,
dtype = None ,
device = None ,
operations = None ,
) :
super ( ) . __init__ ( )
self . dim = dim
self . dim_heads = dim_heads
self . cross_attend = cross_attend
self . dim_context = dim_context
self . causal = causal
self . pre_norm = LayerNorm ( dim , dtype = dtype , device = device , * * norm_kwargs ) if not remove_norms else nn . Identity ( )
self . self_attn = Attention (
dim ,
dim_heads = dim_heads ,
causal = causal ,
zero_init_output = zero_init_branch_outputs ,
dtype = dtype ,
device = device ,
operations = operations ,
* * attn_kwargs
)
if cross_attend :
self . cross_attend_norm = LayerNorm ( dim , dtype = dtype , device = device , * * norm_kwargs ) if not remove_norms else nn . Identity ( )
self . cross_attn = Attention (
dim ,
dim_heads = dim_heads ,
dim_context = dim_context ,
causal = causal ,
zero_init_output = zero_init_branch_outputs ,
dtype = dtype ,
device = device ,
operations = operations ,
* * attn_kwargs
)
self . ff_norm = LayerNorm ( dim , dtype = dtype , device = device , * * norm_kwargs ) if not remove_norms else nn . Identity ( )
self . ff = FeedForward ( dim , zero_init_output = zero_init_branch_outputs , dtype = dtype , device = device , operations = operations , * * ff_kwargs )
self . layer_ix = layer_ix
self . conformer = ConformerModule ( dim , norm_kwargs = norm_kwargs ) if conformer else None
self . global_cond_dim = global_cond_dim
if global_cond_dim is not None :
self . to_scale_shift_gate = nn . Sequential (
nn . SiLU ( ) ,
nn . Linear ( global_cond_dim , dim * 6 , bias = False )
)
nn . init . zeros_ ( self . to_scale_shift_gate [ 1 ] . weight )
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
def forward (
self ,
x ,
context = None ,
global_cond = None ,
mask = None ,
context_mask = None ,
rotary_pos_emb = None
) :
if self . global_cond_dim is not None and self . global_cond_dim > 0 and global_cond is not None :
scale_self , shift_self , gate_self , scale_ff , shift_ff , gate_ff = self . to_scale_shift_gate ( global_cond ) . unsqueeze ( 1 ) . chunk ( 6 , dim = - 1 )
# self-attention with adaLN
residual = x
x = self . pre_norm ( x )
x = x * ( 1 + scale_self ) + shift_self
x = self . self_attn ( x , mask = mask , rotary_pos_emb = rotary_pos_emb )
x = x * torch . sigmoid ( 1 - gate_self )
x = x + residual
if context is not None :
x = x + self . cross_attn ( self . cross_attend_norm ( x ) , context = context , context_mask = context_mask )
if self . conformer is not None :
x = x + self . conformer ( x )
# feedforward with adaLN
residual = x
x = self . ff_norm ( x )
x = x * ( 1 + scale_ff ) + shift_ff
x = self . ff ( x )
x = x * torch . sigmoid ( 1 - gate_ff )
x = x + residual
else :
x = x + self . self_attn ( self . pre_norm ( x ) , mask = mask , rotary_pos_emb = rotary_pos_emb )
if context is not None :
x = x + self . cross_attn ( self . cross_attend_norm ( x ) , context = context , context_mask = context_mask )
if self . conformer is not None :
x = x + self . conformer ( x )
x = x + self . ff ( self . ff_norm ( x ) )
return x
class ContinuousTransformer ( nn . Module ) :
def __init__ (
self ,
dim ,
depth ,
* ,
dim_in = None ,
dim_out = None ,
dim_heads = 64 ,
cross_attend = False ,
cond_token_dim = None ,
global_cond_dim = None ,
causal = False ,
rotary_pos_emb = True ,
zero_init_branch_outputs = True ,
conformer = False ,
use_sinusoidal_emb = False ,
use_abs_pos_emb = False ,
abs_pos_emb_max_length = 10000 ,
dtype = None ,
device = None ,
operations = None ,
* * kwargs
) :
super ( ) . __init__ ( )
self . dim = dim
self . depth = depth
self . causal = causal
self . layers = nn . ModuleList ( [ ] )
self . project_in = operations . Linear ( dim_in , dim , bias = False , dtype = dtype , device = device ) if dim_in is not None else nn . Identity ( )
self . project_out = operations . Linear ( dim , dim_out , bias = False , dtype = dtype , device = device ) if dim_out is not None else nn . Identity ( )
if rotary_pos_emb :
2024-07-30 09:03:20 +00:00
self . rotary_pos_emb = RotaryEmbedding ( max ( dim_heads / / 2 , 32 ) , device = device , dtype = dtype )
2024-06-15 16:14:56 +00:00
else :
self . rotary_pos_emb = None
self . use_sinusoidal_emb = use_sinusoidal_emb
if use_sinusoidal_emb :
self . pos_emb = ScaledSinusoidalEmbedding ( dim )
self . use_abs_pos_emb = use_abs_pos_emb
if use_abs_pos_emb :
self . pos_emb = AbsolutePositionalEmbedding ( dim , abs_pos_emb_max_length )
for i in range ( depth ) :
self . layers . append (
TransformerBlock (
dim ,
dim_heads = dim_heads ,
cross_attend = cross_attend ,
dim_context = cond_token_dim ,
global_cond_dim = global_cond_dim ,
causal = causal ,
zero_init_branch_outputs = zero_init_branch_outputs ,
conformer = conformer ,
layer_ix = i ,
dtype = dtype ,
device = device ,
operations = operations ,
* * kwargs
)
)
def forward (
self ,
x ,
mask = None ,
prepend_embeds = None ,
prepend_mask = None ,
global_cond = None ,
return_info = False ,
* * kwargs
) :
batch , seq , device = * x . shape [ : 2 ] , x . device
info = {
" hidden_states " : [ ] ,
}
x = self . project_in ( x )
if prepend_embeds is not None :
prepend_length , prepend_dim = prepend_embeds . shape [ 1 : ]
assert prepend_dim == x . shape [ - 1 ] , ' prepend dimension must match sequence dimension '
x = torch . cat ( ( prepend_embeds , x ) , dim = - 2 )
if prepend_mask is not None or mask is not None :
mask = mask if mask is not None else torch . ones ( ( batch , seq ) , device = device , dtype = torch . bool )
prepend_mask = prepend_mask if prepend_mask is not None else torch . ones ( ( batch , prepend_length ) , device = device , dtype = torch . bool )
mask = torch . cat ( ( prepend_mask , mask ) , dim = - 1 )
# Attention layers
if self . rotary_pos_emb is not None :
rotary_pos_emb = self . rotary_pos_emb . forward_from_seq_len ( x . shape [ 1 ] , dtype = x . dtype , device = x . device )
else :
rotary_pos_emb = None
if self . use_sinusoidal_emb or self . use_abs_pos_emb :
x = x + self . pos_emb ( x )
# Iterate over the transformer layers
for layer in self . layers :
x = layer ( x , rotary_pos_emb = rotary_pos_emb , global_cond = global_cond , * * kwargs )
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info :
info [ " hidden_states " ] . append ( x )
x = self . project_out ( x )
if return_info :
return x , info
return x
class AudioDiffusionTransformer ( nn . Module ) :
def __init__ ( self ,
io_channels = 64 ,
patch_size = 1 ,
embed_dim = 1536 ,
cond_token_dim = 768 ,
project_cond_tokens = False ,
global_cond_dim = 1536 ,
project_global_cond = True ,
input_concat_dim = 0 ,
prepend_cond_dim = 0 ,
depth = 24 ,
num_heads = 24 ,
transformer_type : tp . Literal [ " continuous_transformer " ] = " continuous_transformer " ,
global_cond_type : tp . Literal [ " prepend " , " adaLN " ] = " prepend " ,
audio_model = " " ,
dtype = None ,
device = None ,
operations = None ,
* * kwargs ) :
super ( ) . __init__ ( )
self . dtype = dtype
self . cond_token_dim = cond_token_dim
# Timestep embeddings
timestep_features_dim = 256
self . timestep_features = FourierFeatures ( 1 , timestep_features_dim , dtype = dtype , device = device )
self . to_timestep_embed = nn . Sequential (
operations . Linear ( timestep_features_dim , embed_dim , bias = True , dtype = dtype , device = device ) ,
nn . SiLU ( ) ,
operations . Linear ( embed_dim , embed_dim , bias = True , dtype = dtype , device = device ) ,
)
if cond_token_dim > 0 :
# Conditioning tokens
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
self . to_cond_embed = nn . Sequential (
operations . Linear ( cond_token_dim , cond_embed_dim , bias = False , dtype = dtype , device = device ) ,
nn . SiLU ( ) ,
operations . Linear ( cond_embed_dim , cond_embed_dim , bias = False , dtype = dtype , device = device )
)
else :
cond_embed_dim = 0
if global_cond_dim > 0 :
# Global conditioning
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
self . to_global_embed = nn . Sequential (
operations . Linear ( global_cond_dim , global_embed_dim , bias = False , dtype = dtype , device = device ) ,
nn . SiLU ( ) ,
operations . Linear ( global_embed_dim , global_embed_dim , bias = False , dtype = dtype , device = device )
)
if prepend_cond_dim > 0 :
# Prepend conditioning
self . to_prepend_embed = nn . Sequential (
operations . Linear ( prepend_cond_dim , embed_dim , bias = False , dtype = dtype , device = device ) ,
nn . SiLU ( ) ,
operations . Linear ( embed_dim , embed_dim , bias = False , dtype = dtype , device = device )
)
self . input_concat_dim = input_concat_dim
dim_in = io_channels + self . input_concat_dim
self . patch_size = patch_size
# Transformer
self . transformer_type = transformer_type
self . global_cond_type = global_cond_type
if self . transformer_type == " continuous_transformer " :
global_dim = None
if self . global_cond_type == " adaLN " :
# The global conditioning is projected to the embed_dim already at this point
global_dim = embed_dim
self . transformer = ContinuousTransformer (
dim = embed_dim ,
depth = depth ,
dim_heads = embed_dim / / num_heads ,
dim_in = dim_in * patch_size ,
dim_out = io_channels * patch_size ,
cross_attend = cond_token_dim > 0 ,
cond_token_dim = cond_embed_dim ,
global_cond_dim = global_dim ,
dtype = dtype ,
device = device ,
operations = operations ,
* * kwargs
)
else :
raise ValueError ( f " Unknown transformer type: { self . transformer_type } " )
self . preprocess_conv = operations . Conv1d ( dim_in , dim_in , 1 , bias = False , dtype = dtype , device = device )
self . postprocess_conv = operations . Conv1d ( io_channels , io_channels , 1 , bias = False , dtype = dtype , device = device )
def _forward (
self ,
x ,
t ,
mask = None ,
cross_attn_cond = None ,
cross_attn_cond_mask = None ,
input_concat_cond = None ,
global_embed = None ,
prepend_cond = None ,
prepend_cond_mask = None ,
return_info = False ,
* * kwargs ) :
if cross_attn_cond is not None :
cross_attn_cond = self . to_cond_embed ( cross_attn_cond )
if global_embed is not None :
# Project the global conditioning to the embedding dimension
global_embed = self . to_global_embed ( global_embed )
prepend_inputs = None
prepend_mask = None
prepend_length = 0
if prepend_cond is not None :
# Project the prepend conditioning to the embedding dimension
prepend_cond = self . to_prepend_embed ( prepend_cond )
prepend_inputs = prepend_cond
if prepend_cond_mask is not None :
prepend_mask = prepend_cond_mask
if input_concat_cond is not None :
# Interpolate input_concat_cond to the same length as x
if input_concat_cond . shape [ 2 ] != x . shape [ 2 ] :
input_concat_cond = F . interpolate ( input_concat_cond , ( x . shape [ 2 ] , ) , mode = ' nearest ' )
x = torch . cat ( [ x , input_concat_cond ] , dim = 1 )
# Get the batch of timestep embeddings
timestep_embed = self . to_timestep_embed ( self . timestep_features ( t [ : , None ] ) . to ( x . dtype ) ) # (b, embed_dim)
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
if global_embed is not None :
global_embed = global_embed + timestep_embed
else :
global_embed = timestep_embed
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
if self . global_cond_type == " prepend " :
if prepend_inputs is None :
# Prepend inputs are just the global embed, and the mask is all ones
prepend_inputs = global_embed . unsqueeze ( 1 )
prepend_mask = torch . ones ( ( x . shape [ 0 ] , 1 ) , device = x . device , dtype = torch . bool )
else :
# Prepend inputs are the prepend conditioning + the global embed
prepend_inputs = torch . cat ( [ prepend_inputs , global_embed . unsqueeze ( 1 ) ] , dim = 1 )
prepend_mask = torch . cat ( [ prepend_mask , torch . ones ( ( x . shape [ 0 ] , 1 ) , device = x . device , dtype = torch . bool ) ] , dim = 1 )
prepend_length = prepend_inputs . shape [ 1 ]
x = self . preprocess_conv ( x ) + x
x = rearrange ( x , " b c t -> b t c " )
extra_args = { }
if self . global_cond_type == " adaLN " :
extra_args [ " global_cond " ] = global_embed
if self . patch_size > 1 :
x = rearrange ( x , " b (t p) c -> b t (c p) " , p = self . patch_size )
if self . transformer_type == " x-transformers " :
output = self . transformer ( x , prepend_embeds = prepend_inputs , context = cross_attn_cond , context_mask = cross_attn_cond_mask , mask = mask , prepend_mask = prepend_mask , * * extra_args , * * kwargs )
elif self . transformer_type == " continuous_transformer " :
output = self . transformer ( x , prepend_embeds = prepend_inputs , context = cross_attn_cond , context_mask = cross_attn_cond_mask , mask = mask , prepend_mask = prepend_mask , return_info = return_info , * * extra_args , * * kwargs )
if return_info :
output , info = output
elif self . transformer_type == " mm_transformer " :
output = self . transformer ( x , context = cross_attn_cond , mask = mask , context_mask = cross_attn_cond_mask , * * extra_args , * * kwargs )
output = rearrange ( output , " b t c -> b c t " ) [ : , : , prepend_length : ]
if self . patch_size > 1 :
output = rearrange ( output , " b (c p) t -> b c (t p) " , p = self . patch_size )
output = self . postprocess_conv ( output ) + output
if return_info :
return output , info
return output
def forward (
self ,
x ,
timestep ,
context = None ,
context_mask = None ,
input_concat_cond = None ,
global_embed = None ,
negative_global_embed = None ,
prepend_cond = None ,
prepend_cond_mask = None ,
mask = None ,
return_info = False ,
control = None ,
transformer_options = { } ,
* * kwargs ) :
return self . _forward (
x ,
timestep ,
cross_attn_cond = context ,
cross_attn_cond_mask = context_mask ,
input_concat_cond = input_concat_cond ,
global_embed = global_embed ,
prepend_cond = prepend_cond ,
prepend_cond_mask = prepend_cond_mask ,
mask = mask ,
return_info = return_info ,
* * kwargs
)