2024-04-04 04:48:42 +00:00
|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
|
|
import comfy.conds
|
2024-11-09 12:10:43 +00:00
|
|
|
import comfy.utils
|
2024-04-04 04:48:42 +00:00
|
|
|
|
|
|
|
def prepare_mask(noise_mask, shape, device):
|
2024-11-09 12:10:43 +00:00
|
|
|
return comfy.utils.reshape_mask(noise_mask, shape).to(device)
|
2024-04-04 04:48:42 +00:00
|
|
|
|
|
|
|
def get_models_from_cond(cond, model_type):
|
|
|
|
models = []
|
|
|
|
for c in cond:
|
|
|
|
if model_type in c:
|
|
|
|
models += [c[model_type]]
|
|
|
|
return models
|
|
|
|
|
|
|
|
def convert_cond(cond):
|
|
|
|
out = []
|
|
|
|
for c in cond:
|
|
|
|
temp = c[1].copy()
|
|
|
|
model_conds = temp.get("model_conds", {})
|
|
|
|
if c[0] is not None:
|
|
|
|
model_conds["c_crossattn"] = comfy.conds.CONDCrossAttn(c[0]) #TODO: remove
|
|
|
|
temp["cross_attn"] = c[0]
|
|
|
|
temp["model_conds"] = model_conds
|
|
|
|
out.append(temp)
|
|
|
|
return out
|
|
|
|
|
|
|
|
def get_additional_models(conds, dtype):
|
|
|
|
"""loads additional models in conditioning"""
|
|
|
|
cnets = []
|
|
|
|
gligen = []
|
|
|
|
|
|
|
|
for k in conds:
|
|
|
|
cnets += get_models_from_cond(conds[k], "control")
|
|
|
|
gligen += get_models_from_cond(conds[k], "gligen")
|
|
|
|
|
|
|
|
control_nets = set(cnets)
|
|
|
|
|
|
|
|
inference_memory = 0
|
|
|
|
control_models = []
|
|
|
|
for m in control_nets:
|
|
|
|
control_models += m.get_models()
|
|
|
|
inference_memory += m.inference_memory_requirements(dtype)
|
|
|
|
|
|
|
|
gligen = [x[1] for x in gligen]
|
|
|
|
models = control_models + gligen
|
|
|
|
return models, inference_memory
|
|
|
|
|
|
|
|
def cleanup_additional_models(models):
|
|
|
|
"""cleanup additional models that were loaded"""
|
|
|
|
for m in models:
|
|
|
|
if hasattr(m, 'cleanup'):
|
|
|
|
m.cleanup()
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_sampling(model, noise_shape, conds):
|
|
|
|
device = model.load_device
|
|
|
|
real_model = None
|
|
|
|
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
2024-08-01 20:39:59 +00:00
|
|
|
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
|
|
|
|
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
|
|
|
|
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
|
2024-04-04 04:48:42 +00:00
|
|
|
real_model = model.model
|
|
|
|
|
|
|
|
return real_model, conds, models
|
|
|
|
|
|
|
|
def cleanup_models(conds, models):
|
|
|
|
cleanup_additional_models(models)
|
|
|
|
|
|
|
|
control_cleanup = []
|
|
|
|
for k in conds:
|
|
|
|
control_cleanup += get_models_from_cond(conds[k], "control")
|
|
|
|
|
|
|
|
cleanup_additional_models(set(control_cleanup))
|