ComfyUI/comfy/ldm/audio/dit.py

903 lines
30 KiB
Python
Raw Normal View History

# code adapted from: https://github.com/Stability-AI/stable-audio-tools
from comfy.ldm.modules.attention import optimized_attention
import typing as tp
import torch
from einops import rearrange
from torch import nn
from torch.nn import functional as F
import math
import comfy.ops
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
super().__init__()
assert out_features % 2 == 0
self.weight = nn.Parameter(torch.empty(
[out_features // 2, in_features], dtype=dtype, device=device))
def forward(self, input):
f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
return torch.cat([f.cos(), f.sin()], dim=-1)
# norms
class LayerNorm(nn.Module):
def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None):
"""
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
"""
super().__init__()
self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
if bias:
self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
else:
self.beta = None
def forward(self, x):
beta = self.beta
if beta is not None:
beta = comfy.ops.cast_to_input(beta, x)
return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation,
use_conv = False,
conv_kernel_size = 3,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.act = activation
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device)
self.use_conv = use_conv
def forward(self, x):
if self.use_conv:
x = rearrange(x, 'b n d -> b d n')
x = self.proj(x)
x = rearrange(x, 'b d n -> b n d')
else:
x = self.proj(x)
x, gate = x.chunk(2, dim = -1)
return x * self.act(gate)
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.scale = dim ** -0.5
self.max_seq_len = max_seq_len
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos = None, seq_start_pos = None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if pos is None:
pos = torch.arange(seq_len, device = device)
if seq_start_pos is not None:
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta = 10000):
super().__init__()
assert (dim % 2) == 0, 'dimension must be divisible by 2'
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent = False)
def forward(self, x, pos = None, seq_start_pos = None):
seq_len, device = x.shape[1], x.device
if pos is None:
pos = torch.arange(seq_len, device = device)
if seq_start_pos is not None:
pos = pos - seq_start_pos[..., None]
emb = torch.einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
return emb * self.scale
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos = False,
scale_base = 512,
interpolation_factor = 1.,
base = 10000,
base_rescale_factor = 1.,
dtype=None,
device=None,
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
# inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward_from_seq_len(self, seq_len, device, dtype):
# device = self.inv_freq.device
t = torch.arange(seq_len, device=device, dtype=dtype)
return self.forward(t)
def forward(self, t):
# device = self.inv_freq.device
device = t.device
dtype = t.dtype
# t = t.to(torch.float32)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
freqs = torch.cat((freqs, freqs), dim = -1)
if self.scale is None:
return freqs, 1.
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim = -1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j = 2)
x1, x2 = x.unbind(dim = -2)
return torch.cat((-x2, x1), dim = -1)
def apply_rotary_pos_emb(t, freqs, scale = 1):
out_dtype = t.dtype
# cast to float32 if necessary for numerical stability
dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
freqs, t = freqs.to(dtype), t.to(dtype)
freqs = freqs[-seq_len:, :]
if t.ndim == 4 and freqs.ndim == 3:
freqs = rearrange(freqs, 'b n d -> b 1 n d')
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
return torch.cat((t, t_unrotated), dim = -1)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out = None,
mult = 4,
no_bias = False,
glu = True,
use_conv = False,
conv_kernel_size = 3,
zero_init_output = True,
dtype=None,
device=None,
operations=None,
):
super().__init__()
inner_dim = int(dim * mult)
# Default to SwiGLU
activation = nn.SiLU()
dim_out = dim if dim_out is None else dim_out
if glu:
linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
else:
linear_in = nn.Sequential(
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
activation
)
linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device)
# # init last linear layer to 0
# if zero_init_output:
# nn.init.zeros_(linear_out.weight)
# if not no_bias:
# nn.init.zeros_(linear_out.bias)
self.ff = nn.Sequential(
linear_in,
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
linear_out,
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
)
def forward(self, x):
return self.ff(x)
class Attention(nn.Module):
def __init__(
self,
dim,
dim_heads = 64,
dim_context = None,
causal = False,
zero_init_output=True,
qk_norm = False,
natten_kernel_size = None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.causal = causal
dim_kv = dim_context if dim_context is not None else dim
self.num_heads = dim // dim_heads
self.kv_heads = dim_kv // dim_heads
if dim_context is not None:
self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device)
else:
self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device)
self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
# if zero_init_output:
# nn.init.zeros_(self.to_out.weight)
self.qk_norm = qk_norm
def forward(
self,
x,
context = None,
mask = None,
context_mask = None,
rotary_pos_emb = None,
causal = None
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
kv_input = context if has_context else x
if hasattr(self, 'to_q'):
# Use separate linear projections for q and k/v
q = self.to_q(x)
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
else:
# Use fused linear projection
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# Normalize q and k for cosine sim attention
if self.qk_norm:
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
if rotary_pos_emb is not None and not has_context:
freqs, _ = rotary_pos_emb
q_dtype = q.dtype
k_dtype = k.dtype
q = q.to(torch.float32)
k = k.to(torch.float32)
freqs = freqs.to(torch.float32)
q = apply_rotary_pos_emb(q, freqs)
k = apply_rotary_pos_emb(k, freqs)
q = q.to(q_dtype)
k = k.to(k_dtype)
input_mask = context_mask
if input_mask is None and not has_context:
input_mask = mask
# determine masking
masks = []
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
if input_mask is not None:
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
# Other masks will be added here later
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
n, device = q.shape[-2], q.device
causal = self.causal if causal is None else causal
if n == 1 and causal:
causal = False
if h != kv_h:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
out = optimized_attention(q, k, v, h, skip_reshape=True)
out = self.to_out(out)
if mask is not None:
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out
class ConformerModule(nn.Module):
def __init__(
self,
dim,
norm_kwargs = {},
):
super().__init__()
self.dim = dim
self.in_norm = LayerNorm(dim, **norm_kwargs)
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
self.glu = GLU(dim, dim, nn.SiLU())
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
self.swish = nn.SiLU()
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
def forward(self, x):
x = self.in_norm(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.glu(x)
x = rearrange(x, 'b n d -> b d n')
x = self.depthwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.mid_norm(x)
x = self.swish(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv_2(x)
x = rearrange(x, 'b d n -> b n d')
return x
class TransformerBlock(nn.Module):
def __init__(
self,
dim,
dim_heads = 64,
cross_attend = False,
dim_context = None,
global_cond_dim = None,
causal = False,
zero_init_branch_outputs = True,
conformer = False,
layer_ix = -1,
remove_norms = False,
attn_kwargs = {},
ff_kwargs = {},
norm_kwargs = {},
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.cross_attend = cross_attend
self.dim_context = dim_context
self.causal = causal
self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
self.self_attn = Attention(
dim,
dim_heads = dim_heads,
causal = causal,
zero_init_output=zero_init_branch_outputs,
dtype=dtype,
device=device,
operations=operations,
**attn_kwargs
)
if cross_attend:
self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
self.cross_attn = Attention(
dim,
dim_heads = dim_heads,
dim_context=dim_context,
causal = causal,
zero_init_output=zero_init_branch_outputs,
dtype=dtype,
device=device,
operations=operations,
**attn_kwargs
)
self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs)
self.layer_ix = layer_ix
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
self.global_cond_dim = global_cond_dim
if global_cond_dim is not None:
self.to_scale_shift_gate = nn.Sequential(
nn.SiLU(),
nn.Linear(global_cond_dim, dim * 6, bias=False)
)
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
def forward(
self,
x,
context = None,
global_cond=None,
mask = None,
context_mask = None,
rotary_pos_emb = None
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
# self-attention with adaLN
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
# feedforward with adaLN
residual = x
x = self.ff_norm(x)
x = x * (1 + scale_ff) + shift_ff
x = self.ff(x)
x = x * torch.sigmoid(1 - gate_ff)
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
x = x + self.ff(self.ff_norm(x))
return x
class ContinuousTransformer(nn.Module):
def __init__(
self,
dim,
depth,
*,
dim_in = None,
dim_out = None,
dim_heads = 64,
cross_attend=False,
cond_token_dim=None,
global_cond_dim=None,
causal=False,
rotary_pos_emb=True,
zero_init_branch_outputs=True,
conformer=False,
use_sinusoidal_emb=False,
use_abs_pos_emb=False,
abs_pos_emb_max_length=10000,
dtype=None,
device=None,
operations=None,
**kwargs
):
super().__init__()
self.dim = dim
self.depth = depth
self.causal = causal
self.layers = nn.ModuleList([])
self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity()
self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()
if rotary_pos_emb:
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
else:
self.rotary_pos_emb = None
self.use_sinusoidal_emb = use_sinusoidal_emb
if use_sinusoidal_emb:
self.pos_emb = ScaledSinusoidalEmbedding(dim)
self.use_abs_pos_emb = use_abs_pos_emb
if use_abs_pos_emb:
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
for i in range(depth):
self.layers.append(
TransformerBlock(
dim,
dim_heads = dim_heads,
cross_attend = cross_attend,
dim_context = cond_token_dim,
global_cond_dim = global_cond_dim,
causal = causal,
zero_init_branch_outputs = zero_init_branch_outputs,
conformer=conformer,
layer_ix=i,
dtype=dtype,
device=device,
operations=operations,
**kwargs
)
)
def forward(
self,
x,
mask = None,
prepend_embeds = None,
prepend_mask = None,
global_cond = None,
return_info = False,
**kwargs
):
patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
batch, seq, device = *x.shape[:2], x.device
context = kwargs["context"]
info = {
"hidden_states": [],
}
x = self.project_in(x)
if prepend_embeds is not None:
prepend_length, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
x = torch.cat((prepend_embeds, x), dim = -2)
if prepend_mask is not None or mask is not None:
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
mask = torch.cat((prepend_mask, mask), dim = -1)
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
else:
rotary_pos_emb = None
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
x = x + self.pos_emb(x)
blocks_replace = patches_replace.get("dit", {})
# Iterate over the transformer layers
for i, layer in enumerate(self.layers):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
x = out["img"]
else:
x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
# x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:
info["hidden_states"].append(x)
x = self.project_out(x)
if return_info:
return x, info
return x
class AudioDiffusionTransformer(nn.Module):
def __init__(self,
io_channels=64,
patch_size=1,
embed_dim=1536,
cond_token_dim=768,
project_cond_tokens=False,
global_cond_dim=1536,
project_global_cond=True,
input_concat_dim=0,
prepend_cond_dim=0,
depth=24,
num_heads=24,
transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer",
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
audio_model="",
dtype=None,
device=None,
operations=None,
**kwargs):
super().__init__()
self.dtype = dtype
self.cond_token_dim = cond_token_dim
# Timestep embeddings
timestep_features_dim = 256
self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device)
self.to_timestep_embed = nn.Sequential(
operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device),
)
if cond_token_dim > 0:
# Conditioning tokens
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
self.to_cond_embed = nn.Sequential(
operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device)
)
else:
cond_embed_dim = 0
if global_cond_dim > 0:
# Global conditioning
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
self.to_global_embed = nn.Sequential(
operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device)
)
if prepend_cond_dim > 0:
# Prepend conditioning
self.to_prepend_embed = nn.Sequential(
operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
)
self.input_concat_dim = input_concat_dim
dim_in = io_channels + self.input_concat_dim
self.patch_size = patch_size
# Transformer
self.transformer_type = transformer_type
self.global_cond_type = global_cond_type
if self.transformer_type == "continuous_transformer":
global_dim = None
if self.global_cond_type == "adaLN":
# The global conditioning is projected to the embed_dim already at this point
global_dim = embed_dim
self.transformer = ContinuousTransformer(
dim=embed_dim,
depth=depth,
dim_heads=embed_dim // num_heads,
dim_in=dim_in * patch_size,
dim_out=io_channels * patch_size,
cross_attend = cond_token_dim > 0,
cond_token_dim = cond_embed_dim,
global_cond_dim=global_dim,
dtype=dtype,
device=device,
operations=operations,
**kwargs
)
else:
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device)
self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device)
def _forward(
self,
x,
t,
mask=None,
cross_attn_cond=None,
cross_attn_cond_mask=None,
input_concat_cond=None,
global_embed=None,
prepend_cond=None,
prepend_cond_mask=None,
return_info=False,
**kwargs):
if cross_attn_cond is not None:
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
if global_embed is not None:
# Project the global conditioning to the embedding dimension
global_embed = self.to_global_embed(global_embed)
prepend_inputs = None
prepend_mask = None
prepend_length = 0
if prepend_cond is not None:
# Project the prepend conditioning to the embedding dimension
prepend_cond = self.to_prepend_embed(prepend_cond)
prepend_inputs = prepend_cond
if prepend_cond_mask is not None:
prepend_mask = prepend_cond_mask
if input_concat_cond is not None:
# Interpolate input_concat_cond to the same length as x
if input_concat_cond.shape[2] != x.shape[2]:
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
x = torch.cat([x, input_concat_cond], dim=1)
# Get the batch of timestep embeddings
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim)
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
if global_embed is not None:
global_embed = global_embed + timestep_embed
else:
global_embed = timestep_embed
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
if self.global_cond_type == "prepend":
if prepend_inputs is None:
# Prepend inputs are just the global embed, and the mask is all ones
prepend_inputs = global_embed.unsqueeze(1)
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
else:
# Prepend inputs are the prepend conditioning + the global embed
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
prepend_length = prepend_inputs.shape[1]
x = self.preprocess_conv(x) + x
x = rearrange(x, "b c t -> b t c")
extra_args = {}
if self.global_cond_type == "adaLN":
extra_args["global_cond"] = global_embed
if self.patch_size > 1:
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
if self.transformer_type == "x-transformers":
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
elif self.transformer_type == "continuous_transformer":
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
if return_info:
output, info = output
elif self.transformer_type == "mm_transformer":
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
if self.patch_size > 1:
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
output = self.postprocess_conv(output) + output
if return_info:
return output, info
return output
def forward(
self,
x,
timestep,
context=None,
context_mask=None,
input_concat_cond=None,
global_embed=None,
negative_global_embed=None,
prepend_cond=None,
prepend_cond_mask=None,
mask=None,
return_info=False,
control=None,
**kwargs):
return self._forward(
x,
timestep,
cross_attn_cond=context,
cross_attn_cond_mask=context_mask,
input_concat_cond=input_concat_cond,
global_embed=global_embed,
prepend_cond=prepend_cond,
prepend_cond_mask=prepend_cond_mask,
mask=mask,
return_info=return_info,
**kwargs
)