ComfyUI/comfy_extras/nodes_latent.py

75 lines
2.0 KiB
Python
Raw Normal View History

import comfy.utils
def reshape_latent_to(target_shape, latent):
if latent.shape[1:] != target_shape[1:]:
latent.movedim(1, -1)
latent = comfy.utils.common_upscale(latent, target_shape[3], target_shape[2], "bilinear", "center")
latent.movedim(-1, 1)
return comfy.utils.repeat_to_batch_size(latent, target_shape[0])
class LatentAdd:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
s2 = reshape_latent_to(s1.shape, s2)
samples_out["samples"] = s1 + s2
return (samples_out,)
class LatentSubtract:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples1": ("LATENT",), "samples2": ("LATENT",)}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples1, samples2):
samples_out = samples1.copy()
s1 = samples1["samples"]
s2 = samples2["samples"]
s2 = reshape_latent_to(s1.shape, s2)
samples_out["samples"] = s1 - s2
return (samples_out,)
2023-09-22 05:33:46 +00:00
class LatentMultiply:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "op"
CATEGORY = "latent/advanced"
def op(self, samples, multiplier):
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = s1 * multiplier
return (samples_out,)
NODE_CLASS_MAPPINGS = {
"LatentAdd": LatentAdd,
"LatentSubtract": LatentSubtract,
2023-09-22 05:33:46 +00:00
"LatentMultiply": LatentMultiply,
}