542 lines
18 KiB
Python
542 lines
18 KiB
Python
|
#original code from https://github.com/genmoai/models under apache 2.0 license
|
||
|
#adapted to ComfyUI
|
||
|
|
||
|
from typing import Dict, List, Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from einops import rearrange
|
||
|
# from flash_attn import flash_attn_varlen_qkvpacked_func
|
||
|
from comfy.ldm.modules.attention import optimized_attention
|
||
|
|
||
|
from .layers import (
|
||
|
FeedForward,
|
||
|
PatchEmbed,
|
||
|
RMSNorm,
|
||
|
TimestepEmbedder,
|
||
|
)
|
||
|
|
||
|
from .rope_mixed import (
|
||
|
compute_mixed_rotation,
|
||
|
create_position_matrix,
|
||
|
)
|
||
|
from .temporal_rope import apply_rotary_emb_qk_real
|
||
|
from .utils import (
|
||
|
AttentionPool,
|
||
|
modulate,
|
||
|
)
|
||
|
|
||
|
import comfy.ldm.common_dit
|
||
|
import comfy.ops
|
||
|
|
||
|
|
||
|
def modulated_rmsnorm(x, scale, eps=1e-6):
|
||
|
# Normalize and modulate
|
||
|
x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps)
|
||
|
x_modulated = x_normed * (1 + scale.unsqueeze(1))
|
||
|
|
||
|
return x_modulated
|
||
|
|
||
|
|
||
|
def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6):
|
||
|
# Apply tanh to gate
|
||
|
tanh_gate = torch.tanh(gate).unsqueeze(1)
|
||
|
|
||
|
# Normalize and apply gated scaling
|
||
|
x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate
|
||
|
|
||
|
# Apply residual connection
|
||
|
output = x + x_normed
|
||
|
|
||
|
return output
|
||
|
|
||
|
class AsymmetricAttention(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
dim_x: int,
|
||
|
dim_y: int,
|
||
|
num_heads: int = 8,
|
||
|
qkv_bias: bool = True,
|
||
|
qk_norm: bool = False,
|
||
|
attn_drop: float = 0.0,
|
||
|
update_y: bool = True,
|
||
|
out_bias: bool = True,
|
||
|
attend_to_padding: bool = False,
|
||
|
softmax_scale: Optional[float] = None,
|
||
|
device: Optional[torch.device] = None,
|
||
|
dtype=None,
|
||
|
operations=None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.dim_x = dim_x
|
||
|
self.dim_y = dim_y
|
||
|
self.num_heads = num_heads
|
||
|
self.head_dim = dim_x // num_heads
|
||
|
self.attn_drop = attn_drop
|
||
|
self.update_y = update_y
|
||
|
self.attend_to_padding = attend_to_padding
|
||
|
self.softmax_scale = softmax_scale
|
||
|
if dim_x % num_heads != 0:
|
||
|
raise ValueError(
|
||
|
f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
|
||
|
)
|
||
|
|
||
|
# Input layers.
|
||
|
self.qkv_bias = qkv_bias
|
||
|
self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
|
||
|
# Project text features to match visual features (dim_y -> dim_x)
|
||
|
self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype)
|
||
|
|
||
|
# Query and key normalization for stability.
|
||
|
assert qk_norm
|
||
|
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||
|
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||
|
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||
|
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
|
||
|
|
||
|
# Output layers. y features go back down from dim_x -> dim_y.
|
||
|
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)
|
||
|
self.proj_y = (
|
||
|
operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype)
|
||
|
if update_y
|
||
|
else nn.Identity()
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
x: torch.Tensor, # (B, N, dim_x)
|
||
|
y: torch.Tensor, # (B, L, dim_y)
|
||
|
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
|
||
|
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
|
||
|
crop_y,
|
||
|
**rope_rotation,
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
rope_cos = rope_rotation.get("rope_cos")
|
||
|
rope_sin = rope_rotation.get("rope_sin")
|
||
|
# Pre-norm for visual features
|
||
|
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
|
||
|
|
||
|
# Process visual features
|
||
|
# qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x)
|
||
|
# assert qkv_x.dtype == torch.bfloat16
|
||
|
# qkv_x = all_to_all_collect_tokens(
|
||
|
# qkv_x, self.num_heads
|
||
|
# ) # (3, B, N, local_h, head_dim)
|
||
|
|
||
|
# Process text features
|
||
|
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
|
||
|
q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
||
|
|
||
|
q_y = self.q_norm_y(q_y)
|
||
|
k_y = self.k_norm_y(k_y)
|
||
|
|
||
|
# Split qkv_x into q, k, v
|
||
|
q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
||
|
q_x = self.q_norm_x(q_x)
|
||
|
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
|
||
|
k_x = self.k_norm_x(k_x)
|
||
|
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
|
||
|
|
||
|
q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||
|
k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||
|
v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2)
|
||
|
|
||
|
xy = optimized_attention(q,
|
||
|
k,
|
||
|
v, self.num_heads, skip_reshape=True)
|
||
|
|
||
|
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
|
||
|
x = self.proj_x(x)
|
||
|
o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype)
|
||
|
o[:, :y.shape[1]] = y
|
||
|
|
||
|
y = self.proj_y(o)
|
||
|
# print("ox", x)
|
||
|
# print("oy", y)
|
||
|
return x, y
|
||
|
|
||
|
|
||
|
class AsymmetricJointBlock(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size_x: int,
|
||
|
hidden_size_y: int,
|
||
|
num_heads: int,
|
||
|
*,
|
||
|
mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens.
|
||
|
mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens.
|
||
|
update_y: bool = True, # Whether to update text tokens in this block.
|
||
|
device: Optional[torch.device] = None,
|
||
|
dtype=None,
|
||
|
operations=None,
|
||
|
**block_kwargs,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.update_y = update_y
|
||
|
self.hidden_size_x = hidden_size_x
|
||
|
self.hidden_size_y = hidden_size_y
|
||
|
self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype)
|
||
|
if self.update_y:
|
||
|
self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype)
|
||
|
else:
|
||
|
self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype)
|
||
|
|
||
|
# Self-attention:
|
||
|
self.attn = AsymmetricAttention(
|
||
|
hidden_size_x,
|
||
|
hidden_size_y,
|
||
|
num_heads=num_heads,
|
||
|
update_y=update_y,
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
operations=operations,
|
||
|
**block_kwargs,
|
||
|
)
|
||
|
|
||
|
# MLP.
|
||
|
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
|
||
|
assert mlp_hidden_dim_x == int(1536 * 8)
|
||
|
self.mlp_x = FeedForward(
|
||
|
in_features=hidden_size_x,
|
||
|
hidden_size=mlp_hidden_dim_x,
|
||
|
multiple_of=256,
|
||
|
ffn_dim_multiplier=None,
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
operations=operations,
|
||
|
)
|
||
|
|
||
|
# MLP for text not needed in last block.
|
||
|
if self.update_y:
|
||
|
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
|
||
|
self.mlp_y = FeedForward(
|
||
|
in_features=hidden_size_y,
|
||
|
hidden_size=mlp_hidden_dim_y,
|
||
|
multiple_of=256,
|
||
|
ffn_dim_multiplier=None,
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
operations=operations,
|
||
|
)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
x: torch.Tensor,
|
||
|
c: torch.Tensor,
|
||
|
y: torch.Tensor,
|
||
|
**attn_kwargs,
|
||
|
):
|
||
|
"""Forward pass of a block.
|
||
|
|
||
|
Args:
|
||
|
x: (B, N, dim) tensor of visual tokens
|
||
|
c: (B, dim) tensor of conditioned features
|
||
|
y: (B, L, dim) tensor of text tokens
|
||
|
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
|
||
|
|
||
|
Returns:
|
||
|
x: (B, N, dim) tensor of visual tokens after block
|
||
|
y: (B, L, dim) tensor of text tokens after block
|
||
|
"""
|
||
|
N = x.size(1)
|
||
|
|
||
|
c = F.silu(c)
|
||
|
mod_x = self.mod_x(c)
|
||
|
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
|
||
|
|
||
|
mod_y = self.mod_y(c)
|
||
|
if self.update_y:
|
||
|
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
|
||
|
else:
|
||
|
scale_msa_y = mod_y
|
||
|
|
||
|
# Self-attention block.
|
||
|
x_attn, y_attn = self.attn(
|
||
|
x,
|
||
|
y,
|
||
|
scale_x=scale_msa_x,
|
||
|
scale_y=scale_msa_y,
|
||
|
**attn_kwargs,
|
||
|
)
|
||
|
|
||
|
assert x_attn.size(1) == N
|
||
|
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
|
||
|
if self.update_y:
|
||
|
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
|
||
|
|
||
|
# MLP block.
|
||
|
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
|
||
|
if self.update_y:
|
||
|
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)
|
||
|
|
||
|
return x, y
|
||
|
|
||
|
def ff_block_x(self, x, scale_x, gate_x):
|
||
|
x_mod = modulated_rmsnorm(x, scale_x)
|
||
|
x_res = self.mlp_x(x_mod)
|
||
|
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm
|
||
|
return x
|
||
|
|
||
|
def ff_block_y(self, y, scale_y, gate_y):
|
||
|
y_mod = modulated_rmsnorm(y, scale_y)
|
||
|
y_res = self.mlp_y(y_mod)
|
||
|
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm
|
||
|
return y
|
||
|
|
||
|
|
||
|
class FinalLayer(nn.Module):
|
||
|
"""
|
||
|
The final layer of DiT.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size,
|
||
|
patch_size,
|
||
|
out_channels,
|
||
|
device: Optional[torch.device] = None,
|
||
|
dtype=None,
|
||
|
operations=None,
|
||
|
):
|
||
|
super().__init__()
|
||
|
self.norm_final = operations.LayerNorm(
|
||
|
hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype
|
||
|
)
|
||
|
self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype)
|
||
|
self.linear = operations.Linear(
|
||
|
hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype
|
||
|
)
|
||
|
|
||
|
def forward(self, x, c):
|
||
|
c = F.silu(c)
|
||
|
shift, scale = self.mod(c).chunk(2, dim=1)
|
||
|
x = modulate(self.norm_final(x), shift, scale)
|
||
|
x = self.linear(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class AsymmDiTJoint(nn.Module):
|
||
|
"""
|
||
|
Diffusion model with a Transformer backbone.
|
||
|
|
||
|
Ingests text embeddings instead of a label.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
patch_size=2,
|
||
|
in_channels=4,
|
||
|
hidden_size_x=1152,
|
||
|
hidden_size_y=1152,
|
||
|
depth=48,
|
||
|
num_heads=16,
|
||
|
mlp_ratio_x=8.0,
|
||
|
mlp_ratio_y=4.0,
|
||
|
use_t5: bool = False,
|
||
|
t5_feat_dim: int = 4096,
|
||
|
t5_token_length: int = 256,
|
||
|
learn_sigma=True,
|
||
|
patch_embed_bias: bool = True,
|
||
|
timestep_mlp_bias: bool = True,
|
||
|
attend_to_padding: bool = False,
|
||
|
timestep_scale: Optional[float] = None,
|
||
|
use_extended_posenc: bool = False,
|
||
|
posenc_preserve_area: bool = False,
|
||
|
rope_theta: float = 10000.0,
|
||
|
image_model=None,
|
||
|
device: Optional[torch.device] = None,
|
||
|
dtype=None,
|
||
|
operations=None,
|
||
|
**block_kwargs,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.dtype = dtype
|
||
|
self.learn_sigma = learn_sigma
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels
|
||
|
self.patch_size = patch_size
|
||
|
self.num_heads = num_heads
|
||
|
self.hidden_size_x = hidden_size_x
|
||
|
self.hidden_size_y = hidden_size_y
|
||
|
self.head_dim = (
|
||
|
hidden_size_x // num_heads
|
||
|
) # Head dimension and count is determined by visual.
|
||
|
self.attend_to_padding = attend_to_padding
|
||
|
self.use_extended_posenc = use_extended_posenc
|
||
|
self.posenc_preserve_area = posenc_preserve_area
|
||
|
self.use_t5 = use_t5
|
||
|
self.t5_token_length = t5_token_length
|
||
|
self.t5_feat_dim = t5_feat_dim
|
||
|
self.rope_theta = (
|
||
|
rope_theta # Scaling factor for frequency computation for temporal RoPE.
|
||
|
)
|
||
|
|
||
|
self.x_embedder = PatchEmbed(
|
||
|
patch_size=patch_size,
|
||
|
in_chans=in_channels,
|
||
|
embed_dim=hidden_size_x,
|
||
|
bias=patch_embed_bias,
|
||
|
dtype=dtype,
|
||
|
device=device,
|
||
|
operations=operations
|
||
|
)
|
||
|
# Conditionings
|
||
|
# Timestep
|
||
|
self.t_embedder = TimestepEmbedder(
|
||
|
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
|
||
|
)
|
||
|
|
||
|
if self.use_t5:
|
||
|
# Caption Pooling (T5)
|
||
|
self.t5_y_embedder = AttentionPool(
|
||
|
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations
|
||
|
)
|
||
|
|
||
|
# Dense Embedding Projection (T5)
|
||
|
self.t5_yproj = operations.Linear(
|
||
|
t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device
|
||
|
)
|
||
|
|
||
|
# Initialize pos_frequencies as an empty parameter.
|
||
|
self.pos_frequencies = nn.Parameter(
|
||
|
torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device)
|
||
|
)
|
||
|
|
||
|
assert not self.attend_to_padding
|
||
|
|
||
|
# for depth 48:
|
||
|
# b = 0: AsymmetricJointBlock, update_y=True
|
||
|
# b = 1: AsymmetricJointBlock, update_y=True
|
||
|
# ...
|
||
|
# b = 46: AsymmetricJointBlock, update_y=True
|
||
|
# b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
|
||
|
blocks = []
|
||
|
for b in range(depth):
|
||
|
# Joint multi-modal block
|
||
|
update_y = b < depth - 1
|
||
|
block = AsymmetricJointBlock(
|
||
|
hidden_size_x,
|
||
|
hidden_size_y,
|
||
|
num_heads,
|
||
|
mlp_ratio_x=mlp_ratio_x,
|
||
|
mlp_ratio_y=mlp_ratio_y,
|
||
|
update_y=update_y,
|
||
|
attend_to_padding=attend_to_padding,
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
operations=operations,
|
||
|
**block_kwargs,
|
||
|
)
|
||
|
|
||
|
blocks.append(block)
|
||
|
self.blocks = nn.ModuleList(blocks)
|
||
|
|
||
|
self.final_layer = FinalLayer(
|
||
|
hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations
|
||
|
)
|
||
|
|
||
|
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Args:
|
||
|
x: (B, C=12, T, H, W) tensor of visual tokens
|
||
|
|
||
|
Returns:
|
||
|
x: (B, C=3072, N) tensor of visual tokens with positional embedding.
|
||
|
"""
|
||
|
return self.x_embedder(x) # Convert BcTHW to BCN
|
||
|
|
||
|
def prepare(
|
||
|
self,
|
||
|
x: torch.Tensor,
|
||
|
sigma: torch.Tensor,
|
||
|
t5_feat: torch.Tensor,
|
||
|
t5_mask: torch.Tensor,
|
||
|
):
|
||
|
"""Prepare input and conditioning embeddings."""
|
||
|
# Visual patch embeddings with positional encoding.
|
||
|
T, H, W = x.shape[-3:]
|
||
|
pH, pW = H // self.patch_size, W // self.patch_size
|
||
|
x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2
|
||
|
assert x.ndim == 3
|
||
|
B = x.size(0)
|
||
|
|
||
|
|
||
|
pH, pW = H // self.patch_size, W // self.patch_size
|
||
|
N = T * pH * pW
|
||
|
assert x.size(1) == N
|
||
|
pos = create_position_matrix(
|
||
|
T, pH=pH, pW=pW, device=x.device, dtype=torch.float32
|
||
|
) # (N, 3)
|
||
|
rope_cos, rope_sin = compute_mixed_rotation(
|
||
|
freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos
|
||
|
) # Each are (N, num_heads, dim // 2)
|
||
|
|
||
|
c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype) # (B, D)
|
||
|
|
||
|
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
|
||
|
|
||
|
c = c_t + t5_y_pool
|
||
|
|
||
|
y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D)
|
||
|
|
||
|
return x, c, y_feat, rope_cos, rope_sin
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
x: torch.Tensor,
|
||
|
timestep: torch.Tensor,
|
||
|
context: List[torch.Tensor],
|
||
|
attention_mask: List[torch.Tensor],
|
||
|
num_tokens=256,
|
||
|
packed_indices: Dict[str, torch.Tensor] = None,
|
||
|
rope_cos: torch.Tensor = None,
|
||
|
rope_sin: torch.Tensor = None,
|
||
|
control=None, **kwargs
|
||
|
):
|
||
|
y_feat = context
|
||
|
y_mask = attention_mask
|
||
|
sigma = timestep
|
||
|
"""Forward pass of DiT.
|
||
|
|
||
|
Args:
|
||
|
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
|
||
|
sigma: (B,) tensor of noise standard deviations
|
||
|
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
|
||
|
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
|
||
|
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
|
||
|
"""
|
||
|
B, _, T, H, W = x.shape
|
||
|
|
||
|
x, c, y_feat, rope_cos, rope_sin = self.prepare(
|
||
|
x, sigma, y_feat, y_mask
|
||
|
)
|
||
|
del y_mask
|
||
|
|
||
|
for i, block in enumerate(self.blocks):
|
||
|
x, y_feat = block(
|
||
|
x,
|
||
|
c,
|
||
|
y_feat,
|
||
|
rope_cos=rope_cos,
|
||
|
rope_sin=rope_sin,
|
||
|
crop_y=num_tokens,
|
||
|
) # (B, M, D), (B, L, D)
|
||
|
del y_feat # Final layers don't use dense text features.
|
||
|
|
||
|
x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels)
|
||
|
x = rearrange(
|
||
|
x,
|
||
|
"B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
|
||
|
T=T,
|
||
|
hp=H // self.patch_size,
|
||
|
wp=W // self.patch_size,
|
||
|
p1=self.patch_size,
|
||
|
p2=self.patch_size,
|
||
|
c=self.out_channels,
|
||
|
)
|
||
|
|
||
|
return -x
|